• Title/Summary/Keyword: Destannification

Search Result 2, Processing Time 0.017 seconds

Morphology and Characteristics of Corrosion of Archaeological Bronzes (출토 청동유물 부식의 형태학적 고찰 및 부식생성물의 특성 연구)

  • Lee, Eun-woo;Kim, So-jin;Han, Woo-rim;Hwang, Jin-ju;Han, Min-Su
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.4-15
    • /
    • 2013
  • The study of corrosion products generated by archaeological bronzes that have been buried for a long time can provide certain evidence that enables us to understand the natural corrosion process of bronze and helps us develop conservation and preservation methods. In the present study, the specimens taken from two bronze mirrors and three bronze swords were used to study the corrosion morphology and the related phenomena such as selective corrosion of ${\alpha}$ or ${\alpha}+{\delta}$ phases, decuprification, destannification, and secondary copper. Furthermore, corrosion development was discussed based on the ions distributed throughout the corrosion layers.

Applicability for Authenticity of Bronze Artefacts using Scientific Analyses (과학적 분석을 통한 전세품 청동기의 진위판별 적용 가능성 연구)

  • Do, Misol;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.355-366
    • /
    • 2013
  • Diverse scientific analyses, including microstructure, ICP-AES, SEM-EDS, and P-XRF(Bench Top type and Gun type), were carried out on 6 bronze artefacts which handed from generation to generation. Also, we attempted to study applicability for authenticity of the bronze artefacts using scientific analyses based on the specific element. The results of ICP-AES analysis showed that the bronze were formed from an alloy of Cu, Sn, Pb with trace elements such as Ag, As, Co, Fe, but there were not Zn found. The result of P-XRF are 10~25% lower in Cu and 10~20% higher in Sn than that of ICP-AES. This is because of destannification that the compound of $SnO_2$ are present on the surface. The results of SEM-EDS represented that there is lead segregation. It was difficult to study applicability for authenticity of bronze artefact according to the microstructures and chemical components of the bronze artefacts. Therefore, as bronze artefacts have shown different corrosion materials depending on the buried environment and conserving environment, identifying the authenticity would be possible on the basis of the additional researches on the corrosion and comparative research of ancient art.