• Title/Summary/Keyword: Desorption temperature

Search Result 494, Processing Time 0.037 seconds

Effect of Temperature, Pressure, and Air Flow Rate on VOCs Desorption for Gasoline Vapor Recovery (유증기 회수를 위한 VOCs 탈착에 미치는 온도, 압력 및 공기유량의 영향)

  • Lee, Song-Woo;Na, Young-Soo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1131-1139
    • /
    • 2013
  • Desorption characteristics of VOCs were investigated for the effective recovery of gasoline vapor. The adsorption capacity and desorption capacity were excellent at relatively low temperatures. The differences in the desorption capacity were not large in the condition; desorption temperature $25^{\circ}C$, desorption pressure 760 mmHg, inlet air flow rate 0.5 L/min, but were relatively great in the condition; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min. The desorption ability of pentane was increased to about 81.4%, and the desorption ability of hexane was increased to about 102%, also the desorption ability of toluene was increased to about 156.7% by changes of temperature, pressure, inlet air flow rate in the experimental conditions. The optimum desorption condition for the effective recovery of VOCs was in the conditions; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min.

A Study on Cleaning Process for Benzene Recovery in Activated Carbon Bed (활성탄을 충전한 흡착탑에서 벤젠 회수를 위한 세정공정의 연구)

  • Kang, Sung-Won;Min, Byong-Hoon;Suh, Sung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.108-116
    • /
    • 2002
  • Experimental Study was carried out for benzene desorption by purge gas or evacuation in an activated carbon bed. As purge gas flow rate increased, desorption rate increased due to the higher interstitial linear gas velocity. For various purge gas flow rates, desoption curves almost got together if they were plotted against dimensionless time. At a higher flow rate, mass transfer zone became narrower. Temperature drop in the bed was more fast and severe at higher flow rates and higher outer temperature. It was found out that desorption was almost completed when the temperature in the drop of the bed returned to the initial temperature before temperature drop. Desorption by vacuum purge was completed in shorter time than desorption by purge gas. Countercurrent purge was more effective than cocurrent purge.

Surface Phenomena of Deuterized Ethanol Exposed Zircaloy-4 Surfaces

  • Park, Ju-Yun;Jung, Se-Won;Chun, Mi-Sun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1349-1352
    • /
    • 2009
  • We report the results of the surface chemistry of deuterized ethanol exposed Zircaloy-4 (Zry-4) surfaces with various amount of $C_2D_5$OD exposures at 190 K. This system was examined with Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) techniques. In TPD study, $D_2$ was evolved at two different desorption temperature regions accompanying with broad desorption background. The lower temperature feature at around 520 K showed first-order desorption kinetics. The high temperature desorption peak at around 650 K shifted to lower desorption temperature as the exposure of $C_2D_5$OD increased. The Zr(MNV) Auger peak shifted about 2.5 eV from 147 eV to lower electron energy followed by 300 L of $C_2D_5$OD dosing. This implies metallic zirconium was oxidized by deuterized ethanol adsorption. After stepwise annealing of the oxidized Zry-4 sample up to 843 K, the shifted Zr(MNV) peak was gradually shifted back to metallic zirconium peak position. After the sample was heated to 843 K, the oxygen content near the Zry-4 surface was recovered to clean surface level. The concentration of carbon, however, was not recovered by annealing the sample.

Adsorption of Atomic Hydrogen on ZnO Single Crystal Surfaces: A Study on the Impact of Surface Structure

  • Roy, Probir Chandra;Motin, Abdul;Kim, Chang-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.216-216
    • /
    • 2012
  • The interaction of hydrogen with ZnO single crystal surfaces, ZnO (0001), ZnO (000-1), and ZnO (10-10) has been investigated using temperature programmed desorption (TPD) and X-ray photoelectron Spectroscopy (XPS) techniques. When the ZnO single crystal surfaces are exposed to atomic hydrogen at 200 K, all three surfaces show hydrogen desorption at 450 K. ZnO (0001) surface shows hydrogen desorption feature at ~260 K as the hydrogen exposure is increased. The ZnO (10-10) surface shows low-temperature desorption feature first and the high-temperature desorption feature appears as the hydrogen exposure increases. The ZnO (000-1) surface does not show any lower temperature hydrogen desorption. We will report the adsorption configuration of hydrogen atoms on ZnO single crystal surfaces with different surfaces structures.

  • PDF

Effect of the Thermal Etching Temperature and SiO2/Al2O3 Ratio of Flexible Zeolite Fibers on the Adsorption/desorption Characteristics of Toluene

  • Ji, Sang Hyun;Yun, Ji Sun
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the $SiO_2/Al_2O_3$ ratios of zeolites. The acidity of the flexible zeolite fibers with different $SiO_2/Al_2O_3$ ratios is measured by ammonia-temperature-programmed desorption ($NH_3-TPD$), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher $SiO_2/Al_2O_3$ ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.

The Interaction of Hydrogen Atom with ZnO: A Comparative Study of Two Polar Surfaces

  • Doh, Won-Hui;Roy, Probir Chandra;Kim, Chang-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.249-249
    • /
    • 2012
  • The interaction of hydrogen with ZnO single crystal surfaces, ZnO(0001) and ZnO(000-1), has been investigated using a temperature programmed desorption (TPD) technique. Both surfaces do not interact with molecular hydrogen. When the ZnO(0001) is exposed to atomic hydrogen at 370 K, hydrogen is adsorbed in the surface and desorption takes place at around 460 K and 700 K. In ZnO(000-1), the desorption peaks are observed at around 440 K and 540 K. In both surfaces, as the atomic hydrogen exposure is further increased, the intensity of the low-temperature peak reaches maximum but the intensity of the high-temperature peak keeps increasing. In ZnO(000-1), the existence of hydrogen bonding to the surface O atoms and the bulk hydrogen has been confirmed by using X-ray photoelectron spectroscopy (XPS). When the Zn(0001) surface is exposed to atomic hydrogen at around 200 K, a new $H_2$ desorption peak has been observed at around 250 K. The intensity of the desorption feature at 250 K is much greater than that of the desorption feature at 460 K. This low-temperature desorption feature indicates hydrogen is bonded to surface Zn atoms. We will report the effect of the ZnO structure on the adsorption and bulk diffusion of hydrogen.

  • PDF

Adsorption and Desorption Characteristics of Binary-component Volatile Organic compounds (Toluene-MEK) on Activated Carbon (이성분 휘발성유기화합물(Toluene-MEK)의 활성탄 흡착 및 탈착 특성)

  • Yu, Seon A;Cho, Jong Hoon;Park, Ji Yun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.421-428
    • /
    • 2017
  • In this study, we have investigated the characteristics of adsorption and desorption of toluene, methyl ethyl ketone (MEK) and their binary component using activated carbon. The BET analysis was performed to identify the characteristics of the activated carbon, and the desorption characteristics with temperature were examined to find out an optimum desorption temperature. Ten cyclic experiments of adsorption-desorption were performed, where each adsorption temperature was maintained at room temperature and desorption temperature at upto $120^{\circ}C$. In case of single component cyclic test, the efficiencies of adsorption and desorption decreased as the cycle increased. MEK which has lower affinity with activated carbon than toluene showed lower efficiencies of adsorption and desorption. In case of binary component cyclic test, a typical roll-up phenomenon was observed during adsorption process, where MEK reaches at breakpoint first and then was swept out by toluene.

A Study on the Performance Prediction of Low Temperature Thermal Desorption System (저온 수처리장치 열교환기의 열전달 특성에 관한 연구)

  • Lee, C.T.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.76-81
    • /
    • 2009
  • Thermal desorption systems are designed to remove organic compounds from solid matrices such as soils, sludges and filter cakes without thermally destroying them. It is a separation technology, not a destruction technology. Since it is a thermal process, there is a common belief that temperature is the only significant parameter to be monitored. While it is true that better removal efficiencies are usually achieved at higher temperatures, other factors must be considered. Since the process is governed by mass transfer, heating time and the amount of mixing are also key parameters in optimizing removal efficiency. Thermal desorption have been successfully used for just about every organic contaminant found to date. It has also been used to remove mercury. In the present study, the numerical simulation has been performed to investigate the characteristics of heat transfer of LTTD(low temperature thermal desorption). The commercial software, AMESIM was applied for analyzing the heat transfer process in the LTTD.

  • PDF

Effect of Temperature on the Adsorption and Desorption Characteristics of Methyl Iodide over TEDA-Impregnated Activated Carbon

  • Park, Geun-Il;Kim, In-Tae;Lee, Jae-Kwang;Ryu, Seung-Kon;Kim, Joo-Hyung
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 2001
  • Adsorption and desorption characteristics of methyl iodide at high temperature conditions up to $250^{\circ}C$ by TEDA-impregnated activated carbon, which is used for radioiodine retention in nuclear facility, was experimentally evaluated. In the range of temperature from $30^{\circ}C$ to $250^{\circ}C$, the adsorption capacity of base activated carbon decreased sharply with increasing temperature but that of TEDA-impregnated activated carbon showed higher value even at high temperature ranges. Especially, the desorption amount of methyl iodide on TEDA-impregnated carbon represented lower value than that on unimpregnated carbon. The breakthrough curves of methyl iodide in the fixed bed packed with base carbon and TEDA-impregnated activated carbon at high temperature were compared. TEDA-impregnated activated carbon would be applicable to adsorption process up to $150^{\circ}C$ for the removal of radioiodine in a nuclear facility.

  • PDF

Effect of Initial Adsorbed Amount, Temperature, and pH on the Desorption of Phenol from Activated Carbon by Organic Solvents (초기 흡착량, 온도, pH가 활성탄 피흡착물인 페놀의 유기용매 탈착에 미치는 영향에 대한 연구)

  • Kim, Seungdo;Oh, Young-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1985-1994
    • /
    • 2000
  • This research was designed to investigate the effect of initial adsorbed amount of phenol, temperature, and pH on the desorption reaction of phenol from spent activated carbon loaded with phenol. Methanol, acetone, and N,N-dimethylformamide( DMF) were used as test organic solvents. The initial adsorbed quantities of phenol investigated here were 166.1mg/g, 180.7mg/g, and 197.9mg/g. The effect of temperature was evaluated from 15 to $55^{\circ}C$ with an interval of $10^{\circ}C$, while that of pH was investigated under acidic. neutral. and alkaline conditions. The extent of phenol desorption was proportional to the strength of dipole moment such as methanol < acetone < DMF. Over 90% desorption of phenol was achieved by acetone and DMF. The quantity of des orbed phenol by the organic solvents decreases with increasing the initial adsorbed amount of phenol. DMF is affected least by the initially adsorbed amount of phenol. An increase in reaction temperature leads to higher desorption of phenol. Desorption reaction by methanol is most sensitive to the temperature. As the pH of solvents increases. the desorption rate is also increasing. At pH=12. the desorption rate of phenol by methanol increases sharply by 10%. Although methanol demonstrated the weakest desorption power. the desorption capacity of methanol would approach that of acetone and DMF by adjusting temperature and pH. Methanol may emerge as a promising solvent for removing phenol from activated carbon because of acceptable regeneration efficiency as well as relatively cheap price.

  • PDF