• Title/Summary/Keyword: Desorption Study

Search Result 700, Processing Time 0.029 seconds

Desorption-Resistance of Hydrophobic Organic Compounds in Natural Soils

  • Shin, Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.26-29
    • /
    • 2001
  • Sorption/desorption Study was conducted to determine desorption-resistance hydrophobic organic compounds in natural soils with low organic carbon content. Sorption/desorption characteristics of chlorobenzene and phenanthrene for both PPI (Petro Processors, Inc. Superfund site) and BM (Bayou Manchac), soils were investigated. Desorption was biphasic including reversible and desorption-resistant compartments. The biphasic sorption parameters indicated the presence of appreciable size of desorption-resistant phase in these soils. A finite maximum capacity of desorption-resistant fraction (equation omitted) was observed after several desorption steps. The apparent organic carbon based Partition coefficient, K(equation omitted) was 10$^{4.92{\pm}0.27}$ for PPI soil and 10$^{4.92{\pm}0.27}$ for BM soil, respectively. The difference in K(equation omitted) was attributed to different characteristics in soil organic matter. The results suggest that desorption-resistance should be considered in remediation and risk assessments in natural soils and sediments.

  • PDF

Analysis and Assessment by Thermal Desorption Method of Mixed Organic Solvents Collected on Activated Carbon(AC) and Activated Carbon Fiber(ACF) (AC 및 ACF에 포집된 혼합 유기용제의 열탈착 방법에 따른 분석 및 평가)

  • 원정일;김기환;신창섭
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.72-90
    • /
    • 2001
  • This study was conducted to evaluate desorption efficiencies accuracy and precision by $CS_2$ and thermal desorption method for polar and non-polar organic solvents collected on activated carbon(AC), activated carbon fiber(ACF), carbosieve SIII, materials tested were Methyl alcohol, n-Hexane, Benzene, Trichloroethylene, Methyl isobutyl ketone and methyl cellosolve acetate and six different concentration levels of samples were made. The results were as follows ; 1. Accuracy on kind adsorbent and desorption method was low. In case of $CS_2$ desorption solvent, Overall B and Overall CV on AC and ACF were 43% and 6.63%, respectively. In case of thermal desorption method, accuracy of thermal desorption method appeared higher than solvent desorption method by AC 18.0%, 3.54%, ACF 2.6%, 2.57%, Carbosieve SIII 13.7% and 1.97%, respectively. 2. In the concentration level III, accuracy of thermal desorption method on adsorbent was in order as follow ; ACF > Carbosieve SIII > AC in the methyl alcohol and Carbosieve SIII > ACF > AC in the rest of them all subject material and Concentration levels showed good precision at EPA recommend standard (${\leq}{\;}30%$) 3. DEs by type of organic solvent adsorbent and desorption method are as follows ; In the case that desorption solvent is $CS_2$, DE of Methyl alcohol is AC 47.5%, DE of all materials is ACF about 50%. In the case of thermal desorption method, DE of Methyl alcohol is AC 82.0%, ACF 97.4%, Carbosieve SIII 86.3%. DE of the later case is prominently improved more than one of former. In particular, Except that DE of EGMEA is ACF 88.5%, DE of the rest of it is more than 95% which is recommend standard MDHS 72. With the result of this study, in order to measure various organic solvent occurring from the working environment, in the case of thermal desorption method, we can get the accurate exposure assessment, reduce the cost, and use ACF as thermal desorption sorbent which available with easy.

  • PDF

Moisture Absorption and Desorption Properties of Douglas Fir, Hinoki, Larch, Plywood, and WML Board in Response to Humidity Variation

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.488-502
    • /
    • 2020
  • In this study, the moisture absorption and desorption properties presented by the Health-Friendly Housing Construction Standards of South Korea were compared using the wood of three tree species (Douglas-fir, Hinoki, Larch) and two types of wood-based materials(Plywood, WML Board). The national standards for functional building materials present that the amounts of moisture absorption and desorption should be at least 65g/㎡ on average, respectively according to the test method under KS F 2611:2009. Therefore, in this study, the moisture absorption/desorption properties of materials with no treatment (Control), with punching, and with surface stain finishing and the moisture absorption/desorption property improvement effects of the treatments were compared and analyzed. According to the results of this study, it was evaluated that all five types of wood and wood-based materials tested did not satisfy the amount of moisture absorption/desorption of at least 65g/㎡, which is the performance standard for moisture absorption/desorption functional building materials, indicating that untreated wood and wood-based materials cannot be applied as functional finishing materials according to the Health-Friendly Housing Construction Standards. The surface stain finishing greatly reduced the moisture absorption and desorption rates of the materials, and the amounts of moisture absorbed and desorbed were also shown to decrease by at least two times on average. When the surfaces of the materials were punched with Ø4mm holes at intervals of 20 mm, the moisture absorption/desorption areas increased from 18% to 51%, and this increase was shown to be capable of increasing the amounts of moisture absorbed/desorbed by 29% on average at the minimum, and 81% on average at the maximum. The effects of punching were shown to be identical even in cases where the materials were stain finished. For the application of wood or wood-based materials as eco-friendly, health-friendly, and moisture absorption/desorption functional building materials hereafter, it is judged that new physical and chemical improvement studies should be conducted, and treatment methods should be developed.

A Study on Desorption Efficiency of PAHs according to Desorption Solvents by HPLC with Sonication Extraction (탈착용매에 따른 PAHs 흡착매체의 탈착효율 평가 연구)

  • Hong, Jwa-ryung;Lee, Ji-eun;Jung, Myung-Koo;Choi, Kwang-min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • Objectives: In general, NIOSH method 5506 is most widely used for the occupational exposure measurement of PAHs, but 2-4 ring PAHs have poor desorption efficiency, especially for a filter. The purpose of this study was to determine a method to increase the desorption efficiency of 16-PAHs using an ultrasonic extraction procedure. Methods: Test samples prepared spiked XAD-2 tubes and PTFE filters in the range of $0.01-1.0{\mu}g/mL$ for desorption efficiency study. Four different extraction solvents, acetonitrile, acetone, tetrahydrofuran and dichloromethane, were tested in order to select the most suitable solvent for the extraction of the 16 PAHs. The addition of dimethyl sulfoxide and sonication time were considered in order to determine the method with the highest extraction efficiency. All samples were made in three sets and analysis was replicated seven times by HPLC. Results: Acetonitrile and acetone were the optimized as an extraction solvent and desorption efficiency of 2-ring PAHs such as naphthalene, acenaphthylene were increased 3~19% with dimethyl sulfoxide for XAD-2. Acetone was the best extraction solvent for PTFE filter and the desorption efficiency was increased 3~13% for 2- to 4-ring PAHs. The optimum sonication time was 60 minutes and desorption efficiency increased with extraction time. Conclusions: As a result, the best extraction solvent was acetone with dimethyl sulfoxide for ultrasonic extraction procedure and the desorption efficiency of this method was better than NIOSH 5506's. This study could be applied as a method for occupational exposure measurement of PAHs.

A Study on Hydraulic Drawdown Test Model and Experimental Estimation of Desorption Rate Ratios of Fuel Filters (유압 저하시험 모델과 자동차 연료필터의 토설율 측정 실험 연구)

  • 이재천;계중읍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.205-213
    • /
    • 2003
  • This study describes the mathematical equation of drawdown test model and introduces the experimental test apparatus and procedure to estimate the desorption rate ratio of a filter. The characteristics of a hydraulic filtration system of drawdown test were demonstrated by numerical simulation for various properties of filters and operation conditions. Experiments for three kinds of fuel filters were conducted according to the proposed test method. And the test results of desorption rate ratio were compared with those values anticipated in precedent multipass filtration tests. Experimental results revealed the validation of drawdown test method proposed in this study. Domestic fuel filter yielded high desorption rate ratio comparing with other foreign products, which means that the Beta ratio decreases a lot during the test. The results also showed that filtration system model could be developed including desorption rate ratio to estimate the variable Beta ratio in service life.

A Study on Cleaning Process for Benzene Recovery in Activated Carbon Bed (활성탄을 충전한 흡착탑에서 벤젠 회수를 위한 세정공정의 연구)

  • Kang, Sung-Won;Min, Byong-Hoon;Suh, Sung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.108-116
    • /
    • 2002
  • Experimental Study was carried out for benzene desorption by purge gas or evacuation in an activated carbon bed. As purge gas flow rate increased, desorption rate increased due to the higher interstitial linear gas velocity. For various purge gas flow rates, desoption curves almost got together if they were plotted against dimensionless time. At a higher flow rate, mass transfer zone became narrower. Temperature drop in the bed was more fast and severe at higher flow rates and higher outer temperature. It was found out that desorption was almost completed when the temperature in the drop of the bed returned to the initial temperature before temperature drop. Desorption by vacuum purge was completed in shorter time than desorption by purge gas. Countercurrent purge was more effective than cocurrent purge.

Study on desorption efficiency of naphthalene by adsorbing media and desorbing solvent (흡착관과 탈착용매에 따른 나프탈렌의 탈착효율에 관한 연구)

  • Choi, Jin Hee;Jo, Jihoon;Choi, Seong Bong;Lee, Kwon Seob;Shin, Hyun Hwa;Yang, Jeong Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.403-411
    • /
    • 2009
  • This study was performed to propose appropriate conditions suited to the analysis of naphthalene by comparing desorption efficiencies under various conditions. 1. As to influence by adsorbing media and desorbing solvent on desorption efficiency of naphthalene, when adsorbed by CCT, o-xylene gave the highest desorption efficiency of $73.96{\pm}0.53%$ while the lowest of $1.14{\pm}0.03%$ desorbed by ether. Both XAD-2 and Chromosorb 106 showed around 90% of desorption efficiencies for each solvent, especially desorption efficiencies more than 95% were achieved when adsorbed by Chromosorb 106 and desorbed by $CS_2$ or o-xylene. 2. Desorption efficiencies descended over the storage period in any condition(p<0.05). For all three adsorbing media, while desorption efficiencies showed no significant difference(p>0.05) between room temperature and refrigeration a day of loading, samples kept in room temperature had higher desorption efficiencies than refrigerated ones in 7 and 14 days with significant difference(p<0.05).Also, desorption efficiencies dropped drastically in 7 days, from that point the decreasing tendency went mild. 3. When respective 1 TLV and 0.1 TLV of naphthalene were spiked on CCT and desorbed by CS2($46.45{\pm}0.59%$ vs. $30.15{\pm}0.81%$), o-xylene($73.96{\pm}0.53%$ vs. $67.51{\pm}1.34%$), and ether($1.14{\pm}0.03%$ vs. N.D.) desorption efficiencies increased as the amount of loading increased(p<0.05).On the other hand, naphthalene spiked on XAD-2 and Chromosorb 106 indicated no significant difference(p>0.05) in desorption efficiencies between 1 TLV and 0.1 TLV. In conclusion, in order for favorable desorption efficiencies of naphthalene it is important to select appropriate adsorbing media and desorbing solvent accordingly. The result revealed that adsorbing media of XAD-2 and Chromosorb 106 outperformed CCT and desorbing solvents of $CS_2$ and o-xylene achieved over 90% of desorption efficiencies when adsorbed on XAD-2 and Chromosorb 106. Also, considering the tendency that desorption efficiencies of naphthalene decrease with time, the samples should be analyzed as soon as possible.

Sorption/Desorption Characteristics of Halogenated Aliphatic Compounds from Activated Sludge, Sediment, and Clay (지방족 할로겐화합물의 활성슬러지와 해안저질 및 점토에서의 흡탈착 특성)

  • 김종오;박종석;최연돈
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.961-969
    • /
    • 2002
  • This study was performed : 1) to establish the experimental analysis conditions for the sorption and desorption of toxic organic contaminants to/from the activated sludge, sediment, and clay, and 2) to determine the sorption and desorption equilibrium coefficients of some representative halogenated aliphatic compounds. Through the preliminary sorption test using Azo dye, a setting of quantitative experimental conditions to determine the sorption and desorption characteristics was decided as follows; equilibration time of 180 minutes, centrifuge for 15 minutes at 5000$\times$g, and 500mg/$\ell$ of TOC concentration. The sorption and desorption characteristics of halogenated aliphatic compounds onto activated sludge, sediment and clay could be described very well using the Freundlich isotherm. The preference of the average sorption capacity of the overall compounds showed in the sequence sediment 0.26mg/g, clay 0.23mg/g, and activated sludge 0.11 mg/g. The desorption rate of the sorbed compounds onto activated sludge, sediment and clay was approximately 89.8%, 35.3%, and 66.4%, respectively.

Prediction of Sorption/Desorption Parameters of Halogenated Aliphatic Compounds Using QSAR (QSAR을 이용한 지방족 할로겐화합물 흡착 및 탈착 계수의 예측)

  • 김종오;박증석;최연돈
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.737-742
    • /
    • 2002
  • Sorption and desorption is an important phenomenon to determine the fate of halogenated aliphatic hydrocarbons in the aqueous phase. This study was conducted to develope a predictive equation capable of estimating the sorption and desorption potentials of halogenated aliphatic hydrocarbons onto the sludge from activated process, sediment, and clay. It has shown that the sorption and desorption parameters can be accurately estimated using Quantitative Structural Activity Relationship(QSAR) models based on molecular connectivity indexes of test compounds. The QSAR model could be applied to predict the sorption and desorption capacity of the other halogenated aliphatic hydrocarbons. The QSAR modeling would provide a useful tool to predict the sorption and desorption capacity without time-consuming experiments.

Numerical Study of Hydrogen Desorption in a Metal Hydride Hydrogen Storage Vessel (금속수소화물 수소 저장 용기 내부의 수소방출에 대한 수치해석적 연구)

  • Kang, Kyung-Mun;Nam, Jin-Moo;Yoo, Ha-Neul;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.363-371
    • /
    • 2011
  • In this paper, a three-dimensional hydrogen desorption model is developed to precisely study the hydrogen desorption kinetics and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The metal hydride hydrogen desorption model, i.e. governed by the conservation of mass, momentum, and thermal energy is first experimentally validated against the temperature evolution data measured on a cylindrical $LaNi_5$ metal hydride vessel. The equilibrium pressure used for hydrogen desorption simulations is derived as a function of H/M atomic ratio and temperature based on the experimental data in the literature. The numerical simulation results agree well with experimental data and the 3D desorption model successfully captures key experimental trends during hydrogen desorption process. Both the simulation and experiment display an initial sharp decrease in the temperature mainly caused by relatively slow heat supply rate from the vessel external wall. On the other hand, the effect of heat supply becomes influential at the latter stages, leading to smooth increase in the vessel temperature in both simulation and experiment. This numerical study provides the fundamental understanding of detailed heat and mass transfer phenomena during hydrogen desorption process and further indicates that efficient design of storage vessel and heating system is critical to achieve fast hydrogen discharging performance.