• Title/Summary/Keyword: Design-experiment research

Search Result 2,206, Processing Time 0.035 seconds

Superconducting Magnet Power Supply System for the KSTAR 2nd Plasma Experiment and Operation

  • Choi, Jae-Hoon;Lee, Dong-Keun;Kim, Chang-Hwan;Jin, Jong-Kook;Han, Sang-Hee;Kong, Jong-Dae;Hong, Seong-Lok;Kim, Yang-Su;Kwon, Myeun;Ahn, Hyun-Sik;Jang, Gye-Yong;Yun, Min-Seong;Seong, Dae-Kyung;Shin, Hyun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.326-330
    • /
    • 2013
  • The Korea Superconducting Tokamak Advanced Research (KSTAR) device is an advanced superconducting tokamak to establish scientific and technological bases for attractive fusion reactor. This device requires 3.5 Tesla of toroidal field (TF) for plasma confinement, and requires a strong poloidal flux swing to generate an inductive voltage to produce and sustain the tokamak plasma. KSTAR was originally designed to have 16 serially connected TF magnets for which the nominal current rating is 35.2 kA. KSTAR also has 7 pairs of poloidal field (PF) coils that are driven to 1 MA/sec for generation of the tokamak plasma according to the operation scenarios. The KSTAR Magnet Power Supply (MPS) was dedicated to the superconducting (SC) coil commissioning and $2^{nd}$ plasma experiment as a part of the system commissioning. This paper will describe key features of KSTAR MPS for the $2^{nd}$ plasma experiment, and will also report the engineering and commissioning results of the magnet power supplies.

Design and Performance Analysis of Propeller for Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3의 프로펠러 설계 및 성능해석)

  • Park, Donghun;Hwang, Seungjae;Kim, Sanggon;Kim, Cheolwan;Lee, Yunggyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.759-768
    • /
    • 2016
  • Design and performance analysis of propeller for solar-powered HALE UAV, EAV-3 are conducted. Experiment points of design variables are obtained by using Design of Experiment(DOE) and Kriging meta-model is generated for objective and constraints function. The geometry of propeller is designed by evaluating the response surface with requirement and restrictions. The validity of the design is verified by meta-model based optimization. Computational analyses are carried out by using commercial CFD code and the results are compared with those from a design code and wind tunnel test. The results showed good agreement with predictions of the design code at the design altitude. Also, it is confirmed that the blockage effect due to the measurement device and support strut is included in the test data and the results including this effect compare well with the test data.

Analysis and Suggestion on Experiment Education in Mechanical Engineering of Universities in USA (미국 대학 기계공학 실험교육 분석 및 제안)

  • Park, Chan-Il
    • Journal of Engineering Education Research
    • /
    • v.15 no.2
    • /
    • pp.46-51
    • /
    • 2012
  • This work investigated experiment education in mechanical engineering of universities in USA. Through the investigation, characteristics of each university were analyzed. Finally, the study suggested new contents of experiment education, full-time professors and staffs for experiment, cooperation with design and experiment education, and incentive for the development of experiment education.

The design of a 920MHz compact RFID reader antenna of slot structure using the Taguchi's Method (Slot 구조를 이용한 920MHz 소형 RFID 리더 안테나 다구찌설계 연구)

  • Kwon, So-Hyun;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.289-292
    • /
    • 2009
  • In this paper, an optimum design center frequency proposes portable RFID reader antenna that is 920MHz frequency using the Taguchi's Method. Proposed antenna is cut corner of opposite angle and it's structure that have slots in four sides microstrip patch of a perfect square shape. This slot structure can miniaturize microstrip patch antenna and confirmed through an experiment that size of antenna about 18% decreases than structure that slot does not exist. Because compact antenna that have structure of slot changes according to complex design variables, analysis and experimental design for minimization of experiment number of times are required for optimum antenna design. In this research, designed antenna that have optimum structure when introduce and designs table of orthogonal arrays of the Taguchi's Method been experimental design that can minimize analysis and experiment number of times, achieve responsiveness analysis of main elements and analyzes the effect and minimizes design repeat with analysis result. Presented experiment result about antenna special quality that permittivity is 4.4 and manufactures to board of Epoxy 3.2T.

  • PDF

Hood and Bumper Structure Design Methodology for Pedestrian Regulation (보행자 법규와 자동차 후드 및 범퍼 구조물 설계방안)

  • Lee Jaewan;Yoon Kyonghan;Kang Younsoo;Park Kyungtaek;Park Gyungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.162-170
    • /
    • 2005
  • Although the numbers of pedestrian fatalities and injuries are steadily declining worldwide, pedestrian protection is still an important issue. Extensive researches have been carried out in the field of pedestrian protection in order to establish pedestrian safety regulations. The automobile hoods and bumpers, which pedestrians frequently run into during accidents, should be safely designed for pedestrians. Two analysis methods are utilized to design safe structures of the hood and the bumper. They are real experiment and computer simulation. In this research, a method is developed to simultaneously utilize the results from the experiment and the simulation. For design, orthogonal arrays are employed to combine the two methods. Based on this method, a hood and a bumper are designed to protect pedestrians.

Investigation of the Influence of The Story Drift Angle of Buildings Caused by Earthquakes on Elevators

  • Yuichi ONUMA;Satoshi FUJITA;Osamu FURUYA;Yusuke OKI;Toshihiro SANKAI
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.160-166
    • /
    • 2024
  • In recent years, as buildings have become taller and taller, the continued usability of elevators after earthquakes has become an important issue. Conventional seismic design of elevators has focused mainly on inertial forces caused by earthquakes, but the influence of the story drift angle of buildings on elevator behavior has been unclear. Therefore, the objective of this study was to clarify the influence of the story drift angle of a building caused by an earthquake on the behavior of elevators through an experiment. The experiment specimens were the counterweight, guide rails, and surrounding components selected from the actual elevator components and mounted on a one-story steel pin frame. A static experiment was conducted using a hydraulic jack to apply force to the specimen by imposing the story drift angle on the steel frame. During the experiment, the reaction force at the end of the jack was monitored, and the displacement and strain of the counterweight, guide rails, and surrounding components were measured. The results of the experiments in one direction showed that even when the elevator components were subjected to a larger story drift angle than assumed in the seismic design of the building, no damage occurred that could lead to fallout.

Disabled Alpine Ski Athlete's Kinematic Characteristic Changes by Computer Aided Design Based Mono Ski Bucket: A Case Study (컴퓨터 디자인 기반 모노스키 버킷 사용에 따른 장애인 알파인 스키 선수의 운동학적 특성 변화 연구: 사례 연구)

  • Koo, Dohoon;Eun, Seondeok;Hyun, Boram;Kweon, Hyosun
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.425-433
    • /
    • 2014
  • The purpose of the study was to investigate the effect of CAD (Computer Aided Design) based alpine mono-ski bucket design on disabled ski athletes' kinematic characteristics. Two national team ski athletes with LW11 disabilities (Locomotion Winter Classification) category for sit ski participated in both pre and post experiment. Both of the subjects performed 3 trials of carved turn on a ski slope under two conditions. Where, subject "A" performed pre experiment with personal bucket and post experiment with the newly developed CAD based bucket whereas, Subject "B" as control subject performed both pre and post experiment with his personal bucket. For the experiment, 24 Infrared cameras were positioned on the ski slope which covered the path of the ski turn. Also, motion capture suit with reflective markers were worn by both subjects. In the result, decrement in medial/lateral displacement of COM, anterior/posterior displacement of COM, flexion/extension angle of trunk as well as velocity losing rate of COM was observed in subject "A" when using the newly developed CAD based bucket. In contrast, no larger effect on performance was observed when using personal buckets. In conclusion, the findings obtained from the study indicated effectiveness of newly developed CAD based bucket by reducing excessive movement of hip and trunk which is an important factor to perform an effective turn.

A Study on Wear loss of Motorcycle Brake Disk by Response Surface Method (반응 표면법을 이용한 이륜자동차 브레이크 디스크 마멸량에 관한 연구)

  • Jeon, H.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.44-49
    • /
    • 2008
  • In this research, I would like to choose sliding distance and ventilated hole number which affect to the amount of wear of disk and pad as experiment conditions of 'the amount of wear' through wear test of motorcycle brake disk. Also, I analyze the amount of wear according to the variation of coefficient of friction by using design of experiment that is being widely used in diverse areas. With the tests of least, I present the correlation of each experiment condition. Therefore, I analyzed the variation of the amount of wear of disk and pad according to test factors such as ventilated hole number, applied load, sliding speed, and sliding distance in wear test of motorcycle brake disk by applying the design of experiment. Also, I analyzed quantitatively the influence of test factors through Taguchi Robust experimental design, response surface and examined the most suitable level and estimation of the amount of wear of disk. From these, I reached the following conclusions. response surface design, mathematical model was constructed about amount of wear of disk and pad. The amount of wear that decrease according to increase of ventilated hole number, and it's increase according to Increase of applied load, sliding speed, and sliding distance.

  • PDF

Robust Design of Composite Structure under Combined Loading of Bending and Torsion (굽힘-비틀림 복합하중을 받는 복합재료 구조물의 최적 강건 설계)

  • Yun, Ji-Yong;O, Gwang-Hwan;Nam, Hyeon-Uk;Han, Gyeong-Seop
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.211-214
    • /
    • 2005
  • This research studied robust design of composite structure under combined loading of bending and torsion. DOE (Design of Experiment) technique was used to find important design factors. The results show that the beam height, beam width, layer thickness and stack angle of outer-layer are important design parameter. The $2^{nd}$ DOE and RSM (Response Surface Model) were conducted to obtain optimum design. Multi-island genetic algorithm was used to optimum design. An approximate value of 6.65 mm in deflection was expected under optimum condition. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the sigma level reliability, the standard deviation of design parameter should be controlled within 2.5 % of average design value.

  • PDF