• Title/Summary/Keyword: Design-driven

Search Result 1,667, Processing Time 0.04 seconds

Designing isolation system for Engine/Compressor Assembly of GAS Driven Heat Pump (가스 엔진 구동 열펌프 실외기 엔진/압축기 진동 절연 설계)

  • Lenchine Valeri V.;Ko, Hong-Seok;Joo, Jae-Man;Oh, Sang-Kyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1128-1133
    • /
    • 2003
  • A gas driven heat pump (GHP) core design comprises internal combustion engine, compressors incorporated to a cooling/heating system, rubber mountings and belt transmissions. Main excitation farces are generated by an engine, compressors themselves and belt fluctuation. It leads to high vibration level of the mount that can cause damage of GHP elements. Therefore an appropriate design of the mounting system is crucial in terms of reliability and vibration reduction. In this paper oscillation of the engine mount is explored both experimentally and analytically. Experimental analysis of natural frequencies and operational frequency response of the GHP engine mounting system enables to create simplified model for numerical and analytical investigations. It is worked out criteria f3r vibration abatement of the isolated structure. Influence of bracket stiffness between engine and compressors, suspension locations and damper performance is investigated. Ways to reduce excitation forces and improve dynamic performance of the engine-compressor mounting system are considered from these analyses. Implementation of the proposed approach permits to choose appropriate rubber mountings and their location as well as joining elements design A phase matching technique can be employed to control forces from main exciters. It enables to changing vibration response of the structure by control of natural modes contribution. Proposed changes lead to significant vibration reduction and can be easily utilized in engineering practice.

  • PDF

A Study on the Driving of Rods in Hydraulic Bent-axis-type Axial Piston Pump Part 1: The Theoretical Analysis of Driving Mechanism (유압 사축식 액셜 피스톤 펌프의 로드 구동에 관한 연구 제1보: 구동 메카니즘의 이론해석)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.51-57
    • /
    • 1998
  • Recently, bent-axis-type axial piston pumps driven by rods being in extensively used in the world, because of simple design, lightweight, effective cost. So, to guarantee the quality of bent-axis-type axial piston pumps driven by rods, it is necessary to know characteristics of the driving mechanism of rods. But, as they perform both reciprocating and spinning motions, it is difficult to understand driving mechanism. In this paper, I studied the theoretical driving mechanisms of cylinder block driven by rods through geometric method. I found that the cylinder block was driven by one rod in limited area and the driving area was changed by rod's tilting angle and cylinder block's swivel angle.

Optimization of Magnetic Flux-path Design for Reduction of Shaft Voltage in IPM-Type BLDC Motor

  • Kim, Kyung-Tae;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2187-2193
    • /
    • 2014
  • In this paper, we propose a method for suppressing shaft voltage by modifying the rotor shape and the permanent magnets in interior permanent magnet type high voltage motors. The shaft voltage, which adversely affects the bearing by occurring bearing current, is induced by parasitic components and the leakage flux in motor-driven systems as well as inherent linkage flux between main magnetic flux and shaft according to rotor configuration. Thus, shaft voltage should be analyzed and considered under inverter-driven and non-inverter-driven conditions because inherent linkage flux can analyze under non-inverter-driven condition. In this study, we designed re-arrangement magnet and re-structuring rotor to minimize the shaft voltage. In addition, we optimized the proposed models. The shaft voltage suppression effect of the designed model was validated experimentally and by comparative finite element analysis.

Dynamic Analysis on Belt-Driven Spindle System of Machine Tools

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.82-89
    • /
    • 2002
  • The need of ultra-precision machine tools, which manufacture and machine the high precision parts used in computers, semi-conductors and other precision machines, has been increased over years. Therefore it is important to design the driving parts, which affect significantly on their performances. In this paper, the dynamic analyses on the belt-driven system were explored. Relation of the acoustical natural frequency and the tension of belt was derived and presented through experiments. Also, while the dynamic loads on motor system were changed, dynamic deflections were calculated through finite element analysis. Nonlinear characteristics of the bearings having an effect on the dynamic performance were studied and the belt connecting the motor (driving part) to spindle of a machine tool (driven part) was modeled as truss and beam elements fur simulations under various conditions, and a beam element model was verified to be more useful.

Load Sharing Control of Driven Roll in Continuous Caster (연속주조기에서 Driven Roll Motor의 Load Sharing 제어)

  • ;Chun, Chang-Keun;Shin, Geon;Kim, Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.715-718
    • /
    • 2002
  • As the modern technology of continuous casting plant is focused on improvement of slab quality, the control system of strand driven roll which has positive effect is investigated in this paper. An irregular distribution of withdrawal force gives rise to horizontal crack in high and middle grade carbon steel. Based on the basic understanding on design concept of high technology company, monitoring the withdrawal force distribution of strand driven roll and analysis of the control system was Performed at continuous casters of POSCO. The control algorithm of withdrawal force distribution for A.C motor vector control, which was derived from above study and had been applied for POSCO Kwangyang 1-4 continuous casting plant, is presented.

  • PDF

The Ball Screw Position Control System Driven by a Pneumatic Motor Using Continous Sliding Mode (연속 슬라이딩 모드를 이용한 공압모터 구동 볼스크류 위치제어 시스템)

  • Kim, Geun-Mook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • The ball screw position control system driven by a pneumatic motor using continuous sliding mode is proposed. The design and performance of proposed servo system are presented by means of examples tested under practical service conditions. Results of experimental implementation on the proposed system illustrate the effectiveness of the ball screw position control system driven by a pneumatic motor using continuous sliding mode as a servo pneumatic actuator driven by a pneumatic motor.

  • PDF

Performance of Database Driven Network Applications from the User Perspective

  • Tang, Shanyu;YongFeng, Huang;Yip, Yau Jim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.3
    • /
    • pp.235-250
    • /
    • 2009
  • An understanding of performance of database driven network applications is critical in combating slow performance of e-commerce web sites, besides efficient web page design, and high quality and well-maintained web server equipment. This paper describes a method of measuring performance from the user viewpoint, which can help enormously in making realistic assessment of true performance of database driven applications. The performance measurements were taken at user locations by using several specially designed JavaScript functions along with ASP scripts. A performance study is presented in this paper, comparing performance of data access using stored procedures with the traditional way of querying a database. It is generally believed that stored procedures have performance benefits as they are pre-compiled. However, our study shows that the data access approach using stored procedures provides significant benefits(by about 30%) over the traditional approach for querying a commercial MySQL database, only when retrieving a substantial amount of data(at least 10,000 rows of data).

Thermal Stress Analysis of Piping Systems in Steam-driven Power Engines (증기 동력기관 내 배관시스템의 열응력 해석)

  • Kim, C.H.;Chung, H.T.;Bae, J.S.;Jung, I.S.;Lee, S.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.35-42
    • /
    • 2009
  • The piping systems in the steam-driven power engines lie under the cyclic condition of thermal expansion and contraction by superheated steam. These phenomena might cause some severe damages on the pipes and the accessory devices. To avoid these damages, the calculation of the proper strength and the consideration of the reduced resultant forces on the materials are needed. In the present study, numerical investigations on the effects of the thermal deformation of the industrial piping system were performed with comparison of the design data. Commercial software, ABAQUS with the thermal-fluidic loadings based on the design conditions was used for the thermal stress analysis of the piping system. From the analysis of the initially-designed pipe supporters, the rearrangement was suggested to improve the piping design.

  • PDF

Basic Design and Performance Analysis of an Solar Absorption Chiller (태양열 구동 흡수식 냉동기의 기본설계 및 성능분석)

  • Baek, N.C.;Yoon, E.S.;Joo, M.C.;Jeong, S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.107-112
    • /
    • 1998
  • Basic design of a solar driven absorption cooling machine(SDACM) with a cooling capacity of 5 USRT was carried out. The SDACM is a single effect cycle driven by low temperature hot water from solar collectors. The SDACM design data were calculated by the steady state simulation program which was developed in this study The variation of COP and cooling capacity of the SDACM were investigated at different off-design conditions. Both the cooling capacity and the system COP were improved with decreasing cooling water temperature. If hot water temperature was increased, the cooling capacity was improved but the system COP was found to be decreased. The decrease of the system COP were basically caused by increased thermal loads in the system components.

  • PDF