• Title/Summary/Keyword: Design water level

Search Result 870, Processing Time 0.025 seconds

Water Rockets for Engineering Education of Launch Vehicles, Part I: Principles and System Composition (발사체 공학교육을 위한 물로켓, Part I: 원리와 시스템 구성)

  • Kim, Jae-Yeul;Hwang, Won-Sub;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.525-534
    • /
    • 2019
  • Water rocket is a pressurized liquid propellant rocket that shares the same basic principles of space launch vehicles. Water rockets can be used as an engineering educational material for the liquid rocket principles and the launch vehicle systems, far beyond the scope of K-12 level science education. In this paper, the principles and theories of water rocket propulsion and flight dynamics was investigated at the level of undergraduate rocket engineering classes. Also, the system level design and operation of water rocket is summarized by including the components of launch vehicle, launch pad, payload and recovery as well as altitude measurement methods.

A Fault Detection System Design for Nuclear Steam Generator Level Control System (원전 증기발생기 수위제어계통의 고장검출 시스템 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.191-197
    • /
    • 2006
  • This paper deals with a fault detection system design for nuclear steam generator water level control system. We expressed the nonlinear properties of the steam generator level system as a T-S fuzzy system with time varying uncertain parameters. We design a residual generator using a left coprime factorization of the T-S fuzzy model and a fault detection filter in order to improve the fault detection performance. We demonstrate the efficiency of the suggested design method via many computer simulations.

Estimation of Design Floods Using 3 and 4 Parameter Kappa Distributions (3변수 및 4변수 Kappa 분포에 의한 설계홍수량 추정)

  • Maeng, Seung-Jin;Kim, Byeoung-Jun;Kim, Hyung-San
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.49-55
    • /
    • 2009
  • This paper is to induce design floods through L-moment with 3 and 4 parameter Kappa distributions including test of independence by Wald-Wolfowitz, homogeneity by Mann-Whitney and outlier by Grubbs-Beck on annual maximum flood flows at 9 water level gaging stations in Han, Nakdong and Geum Rivers of South Korea. After analyzing appropriateness of the data of annual maximum flood flows by Kolmogorov-Smirnov test, 3 and 4 Kappa distributions were applied and the appropriateness was judged. The parameters of 3 and 4 Kappa distributions were estimated by L-moment method and the design floods by water level gaging station was calculated. Through the comparative analysis using the relative root mean square errors (RRMSE) and relative absolute errors (RAE) calculated by 3 and 4 parameter Kappa distributions with 4 plotting position formulas, the result showed that the design floods by 4 parameter Kappa distribution with Weibull and Cunnane plotting position formulas are closer to the observed data than those obtained by 3 parameter Kappa distribution with 4 plotting position formulas and 4 parameter Kappa distribution with Hazen and Gringorten plotting position formulas.

A study on the Visual Preference of Keum River Sceneries at Different Water Level (금강 경관의 수면폭 변화에 따른 시각적 선호도 연구)

  • Yoo, Sang-Wan
    • Archives of design research
    • /
    • v.19 no.1 s.63
    • /
    • pp.273-282
    • /
    • 2006
  • This study has evaluated the visual preference factor of Keum river sceneries which could vary according to the change of water level while other scenic environment near by the river did not change. 1) At Gap Cheon site, the variances of the visual preferences for river scenery at different water level are determined as emotional, physical, aesthetic and individual factor. At Mujoo site, the variances of the visual preferences are determined as only two factors such as emotional and physical factors. Those factors show significant relations. All of the visual preferences are increased as the increase of preference factors. Also decreasing of preference factors result in decreasing of visual preferences. 2) In multiple regression model, both the Gap cheon site and Mujoo site show that the increase of emotional factor affect most to visual preference when other conditions are fixed. The physical factor affect less than the emotional factor. At Gap cheon site, the relative importance level which the preference factors contribute to the visual preference appears as the order of emotional, physical, aesthetic and individual factor. Emotional factor's importance level is 4.2 times greater than individual factor. At Mujoo site, the relative importance level which the preference factors contribute to the visual preference appears as the order of emotional and physical factor. The emotional factor's importance level is 1.1 times greater than physical factor. It is clearly indicate that the emotional factor is most important preference factor in both study sites. The factor analysis results of Keum river scenery at different water level using the visual evaluation method affect a lot to the quantification of river instream flow and water level.

  • PDF

Design of a High Temperature Production Heat Pump System Using Geothermal Water at Moderate Temperature (중온 지열수를 이용한 고온제조 열펌프 시스템 해석 및 설계)

  • Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.638-641
    • /
    • 2008
  • Geothermal water at moderate temperature in a range between 30 to $50^{\circ}C$ exists sparse in surroundings. Mostly they are utilized as heat or water source at spar zones in Korea. However, a large portion of used water is discarded due to its poor recovery quality and inferior application technologies. In this research, an innovative heat pump system based on the hybrid concept that combinate compression cycle and absorption cycle was investigated mathematically. The hybrid heat pump aims to recycle various kind of the heat sources at moderate temperature including geothermal water effectively. The prime objective of the simulation is to design a compression/absorption hybrid heat pump system which can make high temperature above the level of $90^{\circ}C$ and low temperature of $20^{\circ}C$ as well at the same using $50^{\circ}C$ geothermal heat water. As a result, primitive data was provided as a basis to design a prototype 3 RT class hybrid heat pump.

  • PDF

Particle Removal in a Rainwater Storage Tank, and Suggestions for Operation & Design (빗물저장조에서 입자의 제거특성 및 운전과 설계시 고려사항)

  • Mun, Jungsoo;Yoo, Hyoungkeun;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.131-138
    • /
    • 2007
  • A rainwater utilization facility consists of its catchment area, treatment facility, storage tank, supply facility and pipes in general. The rainwater storage tank which occupies the largest area of the facility has been usually considered quantitatively for determining the storage capacity. Hence, there is little information on water quality improvement by sedimentation in a rainwater storage tank in operation. In this study, we measured the rainwater quality in a rainwater storage tank in operation during late spring and summer, and showed water quality improvement of turbidity removal of 25~46% by sedimentation in a rainwater storage tank under a fixed water level without inflow and outflow after runoff ceased. It is necessary to have a considerable distance between the inlet and outlet of the tank and, if possible, it is recommended that the design should allow for an effective water depth of over 3 m and supply rainwater near the water surface. The operation method which increases the retention time by stopping rainwater supply for insuring low turbidity is recommended when the turbidity of rainwater runoff is high. And also more efficient operation and maintenance of the rainwater utilization facility is expected through the tailored design and operation of the facility considering particle removal and behavior.

Design of pole-assignment self-tuning controller for steam generator water level in nuclear power plants (원전 증기 발생기 수위 제어를 위한 자기 동조 제어기 설계)

  • Choi, Byung-Jae;No, Hee-Cheon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.306-311
    • /
    • 1996
  • This paper discusses the maintenance of the water level of steam generators at its programmed value. The process, the water level of a steam generator, has the nonminimum phase property. So, it causes a reverse dynamics called a swell and shrink phenomenon. This phenomenon is severe in a low power condition below 15 %, in turn makes the start-up of the power plant too difficult. The control algorithm used here incorporates a pole-assignment scheme into the minimum variance strategy and we use a parallel adaptation algorithm for the parameter estimation, which is robust to noises. As a result, the total control system can keep the water level constant during full power by locating closed-loop poles appropriately, although the process has the characteristics of high complexity and nonlinearity. Also, the extra perturbation signals are added to the input signal such that the control system guarantee persistently exciting. In order to confirm the control performance of a proposed pole-assignment self-tuning controller we perform a computer simulation in full power range.

  • PDF

A New Concept of Hydraulic Design of Water Turbine Runners

  • Vesely, Jindrich;Pochyly, Frantisek;Obrovsky, Jiri;Mikulasek, Josef
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • Vibrations at different frequencies with a different intensity as well as a pressure pulsation with different parameters are two phenomena which can be observed at different water turbines. Due to the vibration and the pressure pulsation some restrictions of water turbine operation range are applied. Similar problems with the efficiency level in a wide water turbine operation range are the basic problems which are solved for ages. A theoretical and practical solution of the above mentioned problems is very much time and money consuming. The paper describes a new theoretical solution of the excitation and pressure pulsation decrease as well as extension of the operational range with high efficiency level. The new concept to decrease the vibrations and pressure pulsations is based on a heterogeneous runner blade geometry generation. The new concept of the runner geometry design was numerically tested at a low specific speed pump turbine, see Fig. 1, and basic points of the concept are presented in this paper.

Present Condition of Indoor Noise Level in One-Room Type Multi-Family Housings around Campus (대학주변 원룸형 다가구주택의 실내소음수준 실태)

  • Choi Yoon-Jung
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.191-198
    • /
    • 2005
  • The present study is a preliminary research improving the dwelling quality of one-room type multi-family housings around the university campus. The purpose of the study is to investigate the present condition of Indoor noise level using · residents' responses and field measurements. The respondents are 104 residents living in one-room type multi-family housings. The field measurements on equivalent noise level of indoor and outdoor were carried out in 6 subject house units during the $26th\~28th$ of November 2002. The results are as follows. 1) The residents show relatively non-positive responses at evening and night on the present condition of indoor noise. 2) They answer 'living equipment foise' and 'water hammer' as major types of indoor noise of house unit. 3) Outdoor noise levels, basic factor of noise environment in 6 subject buildings were distributed $52.8\~65.3dB(A)Leq_{5min}$ and were inappropriate to the standard for environmental noise, $55 dB(A)Leq_{5min}$. 4) Indoor noise levels of subject house units were measured as $27.5\~63.5dB(A)Leq_{5min}$, the average of each house unit except one house unit was higher than the level feeling as noise, 40dB(A). 5) It was found that the differences of indoor noise levels between subject house units were caused by 'residents' living noise', 'living equipment noise', 'water hammer', and 'walking and talking noise in stairs and corridors'. 6) Therefore, it is required to plan for improving the quality of noise environment in one-room type multi-family housing around the campus. For example, soundproof construction (including double window with pair glass and balcony), outdoor garden with trees and water for increasing natural sound, interior materials with sound absorbing power to absorb living noise, soundproof pipe or double surface pipe for decreasing 'water hammer', and noiseproof floors, etc. are required.

Design Optimization of an Ozone Contactor Using Ozone Contactor Model (OCM) Software

  • Kim, Doo-Il;Lee, Chae-Young;Joe, Woo-Hyeun;Lee, Seock-Heon
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.244-249
    • /
    • 2009
  • Designing an ozone contactor is complicated because the residual ozone, log C. parvum inactivation, and bromate formation should be optimized with fluctuating water quality. OCM software was developed to assist a plant designer or an operator to fulfill the sophisticated optimization required in the design or operation of a new or an existing plant. In this article, numerical simulations were carried out using the OCM software for the design of a new ozone contactor under diverse design factors (i.e., three pHs, three temperatures, low and high dispersion numbers, and four and ten cells with complete mixing) with kinetic parameters obtained from the sand-filter effluent of a water treatment plant treating water from the Paldang impoundment. The results of the simulation suggested that a high residual ozone concentration at low pH and low temperature would be challenging, and PFR-like hydrodynamics could lower the residual ozone concentration. The inactivation of C. parvum oocysts increased at a lower pH. A lower dispersion number and more cell division increased the inactivation efficiency. Bromate was instantaneously formed during the initial ozonation stage. The effluent concentration was much lower than the regulatory levels imposed by the USEPA because of the low bromide level in raw water.