• Title/Summary/Keyword: Design thickness

Search Result 4,197, Processing Time 0.028 seconds

Experimental Study on Minimizing Wall Thickness Thinning for Deep Drawing of Circular Shells (원통형 딥드로잉 용기의 벽 두께 감소 최소화에 관한 실험적 연구)

  • Kim, Doo-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.393-399
    • /
    • 1998
  • For minimizing wall thickness thinning of circular shells, a new stamping technology, the deep draw-ing process combined with ironing is approached and investigated. The design requirements for the deep drawing shells are to keep the optimum wall thickness with max. 10 percent thickness thinning of the initial blank thickness, to make uniform thickness strain distribution for the wall of circular shell and to improve the shape accuracy for the roundness and concentricity. In order to check the validity and effectiveness of proposed work, a sample process design is applied to a circular shell needed for a 4multi-stepped deep drawing. Through experiments, the variations of the thickness strain distribution in each drawing process are observed. Also a series of experiments are performed to investigate optimum process variables such as the geometry of tooling, radius and drawing rate. In particular, the advantage of current approach with ironing is shown in contrast to the conventional deep drawing process. From the results of proposed method, the optimum value of process variables are obtained, which contribute more uniform thickness strain distribution and better quality in the drawn product.

  • PDF

Design of Thin RC Absorbers Using a Silver Nanowire Resistive Screen

  • Lee, Junho;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.106-111
    • /
    • 2016
  • A resistive and capacitive (RC) microwave absorber with a layer thickness less than a quarter of a wavelength is investigated based on closed-form design equations, which are derived from the equivalent circuit of the RC absorber. The RC absorber is shown to have a theoretical 90% absorption bandwidth of 93% when the electrical layer thickness is $57^{\circ}$ (about ${\lambda}_0/6$). The trade-offs between the layer thickness and the absorption bandwidth are also elucidated. The presented formulation is validated by a design example at 3 GHz. The RC absorber is realized using a silver nanowire resistive rectangular structure with surrounding gaps. The measured 90% absorption bandwidth with a layer thickness of ${\lambda}_0/8$ is 76% from 2.3 GHz to 5.1 GHz in accordance with the theory and EM simulations. The presented design methodology is scalable to other frequencies.

An analysis of ground supported farm silo with variable thickness (I) -Part I mechanical characteristics of shell with Variable thickness- (지반과 구조물사이의 상호작용을 고려한 변단면 도통형쉘의 해석 (I) -변단면 쉘의 역학적 특성 (I)-)

  • 조진구;조현영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.58-71
    • /
    • 1989
  • This study aims to develop a computerized program for analysis of the ground-supported cylindrical shell structure with step varied section and to find out its mechanical characteri- stics through application of the developed program to the analysis of a ensiled farm silo as a model structure. The thickness of wall and bottom-plate of farm silo is assumed to be step-varied and its detailed structural dimensions are presented in Tab. 1 and 2. Several numerical case studies show that sectional stresses of the sample structures are largely reduced by adopting "varied section" design technique. And, other major results ob- tained from this study are summarize4 as follows ; 1. The variation of wall-thickness has a great influence on bending stresses of wall. Ho- wever, the larger the relative thickness of bottom-plate is, the smaller the influence is. 2. The magnitude of thickness of projecting toe of bottom-plate has negligible effect on sectional stresses 3. The conventional design methodology, which assumes the bottom edge of wall as clam- ped on ground, is proved to be discarded through the numerical analysis. 4. It is found that the "varied section" design technique should get similar effects as in the case of thick bott6m-plate having uniform thickness. 5. The variation of wall-thickness has a considerable effect on the bending stresses of bo- ttom-plate. Especially, this phenomenon is very remarkable in its projecting toe. In some cases. the negative bending moment may be acted on.

  • PDF

Blank Design for Optimized Thickness Distribution for Axi-symmetric Superplastic Blow Forming (축대칭 초소성 블로성형의 두께분포 최적화를 위한 블랭크 설계)

  • 이정민;홍성석;김용환
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.92-100
    • /
    • 1999
  • A procedure is proposed for determining the initial thickness distribution in oder to produce a specified final thickness distribution for the axisymmetrical superplastic blow forming processes. Weighted parameter is introduced to improve the simple ad $d_traction method and the initial blank thickness distribution is obtained by optimizing the weighted parameter. This method is applied to superplastic free bulging process with the uniform thickness distribution of final shape to confirm its validity. The optimum initial blank thickness distributions is obtained from arbitrary axisymmetrical superplastic blow forming processes such as dome, cone and cylindrical cup forming with die contact. It is concluded that the ad $d_traction method with weighted parameter is an effective method for an optimum blank thickness distribution design.esign.

  • PDF

A study on the thickness change according to the necking ratio of aluminum tube(A3003, A6061) (알루미늄 튜브(A3003, A6061)의 축관률에 따른 두께 변화에 관한 연구)

  • Oh, Jong-Seong;Min, Kyung-Ho;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.37-42
    • /
    • 2021
  • The tube necking process increases the thickness of the material, and some of the tube necking products require cutting on the inside of the formed product as a post-process. In order to prevent over-cutting or un-cutting due to increased thickness during cutting, it is necessary to know in advance the increase in thickness after forming. Therefore, in this study, the thickness change according to the tube necking was observed. Aluminum 3003-F and 6061-O were used for the materials used in the experiment, and necking was carried out up to 50% of the outer diameter of the tube through five processes. The two materials were formed under the same conditions, and the thickness of three points was observed in each process. In addition, the thickness increase of the two materials was compared, and the trend of thickness increase according to the cumulative necking ratio was observed. As a result of the experiment, both materials had the smallest thickness at the end of the formed product. In addition, as a result of comparing the thickness measurement values of the two materials, the maximum difference was 0.1mm, indicating that there was no difference in thickness between the two materials.

Selection of the Large Diameter Pipe Wall Thickness by Value Engineering for a Plant (플랜트에서 가치공학 개념을 적용한 대관경 배관두께 선정에 관한 연구)

  • Choi, Gayoung;Yoo, Hoseon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.7 no.3
    • /
    • pp.65-73
    • /
    • 2011
  • This research has suggested a method to select pipe wall thickness by application of the value engineering to reduce the cost and quantity that are major part of construction materials. This research shows that the application of value engineering reduces the cost of piping materials by optimizing pipe wall thickness while maintaining process flow date of design pressure and design temperature. Based on this knowledge, the application of the value engineering will lead to the cost reduction and quantity reduction by effective selection of pipe wall thickness. The application of the value engineering will help the EPC companies to win a contract in the overseas plant market.

  • PDF

Calculation of Average Thickness of film in Thermoforming by Simulation (시뮬레이션을 통한 열성형에서의 필름 평균두께 계산)

  • Soon-Young Lee;Sun-Kyoung Kim
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.52-56
    • /
    • 2023
  • In this study, numerical simulation of the thermoforming process of PVC film material was performed using PAMForm. For this purpose, tensile tests were performed at various temperatures and the coefficients of the G'Sell model were obtained and used. As a result of the analysis, it was confirmed that the thickness decreased by up to 55% in the section where the film was in contact with the vertical direction and was greatly stretched. If the thickness is excessively thin, the part may become structurally weak, so in the thermoforming process, numerical simulation of the thickness in advance is expected to be helpful in successfully performing the process.

A Study of Panel Denting (판넬의 덴팅에 관한 연구)

  • Jung, Dong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.610-615
    • /
    • 2001
  • In the interest of improved automotive fuel economy, one solution is reducing vehicle weight. Achieving significant weight reductions will normally require reducing the panel thickness or using alternative materials such as aluminum alloy sheet. These changes will affect the dent resistance of the panel. In this study, the correlation between panel size, curvature, thickness, material properties and dent resistance is investigated. A parametric approach is adopted, utilizing a "design software" tool incorporating empirical equations to predict denting and panel stiffness for simplified panels. The developed design program can be used to minimize panel thickness or compare different materials, while maintaining adequate panel performance.

  • PDF

Effects of Design on the Dynamic Response of Reinforced Concrete Slabs (철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Choi, Soo-Myung;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation

  • Banh, Thanh T.;Nguyen, Xuan Q.;Herrmann, Michael;Filippou, Filip C.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.129-145
    • /
    • 2020
  • In typical, structural topology optimization plays a significant role to both increase stiffness and save mass of structures in the resulting design. This study contributes to a new numerical approach of topologically optimal design of Mindlin-Reissner plates considering Winkler foundation and mathematical formulations of multi-directional variable thickness of the plate by using multi-materials. While achieving optimal multi-material topologies of the plate with multi-directional variable thickness, the weight information of structures in terms of effective utilization of the material at the appropriate thickness location may be provided for engineers and designers of structures. Besides, numerical techniques of the well-established mixed interpolation of tensorial components 4 element (MITC4) is utilized to overcome a well-known shear locking problem occurring to thin plate models. The well-founded mathematical formulation of topology optimization problem with variable thickness Mindlin-Reissner plate structures by using multiple materials is derived in detail as one of main achievements of this article. Numerical examples verify that variable thickness Mindlin-Reissner plates on Winkler foundation have a significant effect on topologically optimal multi-material design results.