• 제목/요약/키워드: Design structure

검색결과 17,803건 처리시간 0.04초

차체구조물의 탄소성좌굴에 관한 민감도해석과 최적설계 (Sensitivity Analysis and Optimal design for the Elasto-plastic buckling of Vehicle Structures)

  • 원종진;이종선
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.106-112
    • /
    • 1998
  • Experience and experiments show that in many cases the buckling limit is reached at a much smaller load level than is predicted by linear buckling analysis. In this paper, it is considered linear and nonlinear of plane vehicle structure and estimates design sensitivity of the cross sectional area that is composed plane vehicle structure and performs optimal design. It compares linear vehicle structure with nonlinear vehicle structure for optima design result that is selected constraint condition of buckling load.

  • PDF

GA를 이응한 트러스 구조물의 이산최적설계 (Discrete Optimal Design of Truss Structure Using Genetic Algorithm)

  • 황선일;조홍동;이상근;한상훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.301-308
    • /
    • 1999
  • This paper describes the application of genetic algorithm(GA) in the discrete optimal design of truss structures. Stochastic processes generate an intial population of design and then apply principles of natural selection/survival of the fittest to improve the design. GA is applied to minimum weight of truss subject to stress and displacement constraints under multiple loading conditions. First, optimum solutions obtained from GA are compared to verify the reliability of GA with m well-known transmission tower structure which is referred to by other authors. Then, discrete optimal design is performed in satisfying service conditions of truss structure with commercially available fabricated sizes. From the results, it is found that GA search technique is very effective for discrete optimal design of truss structure and has high robustness.

  • PDF

헬리콥터 탑재 비행 시험을 위한 파드 시스템 구조 설계 (Structural Design of pod system for Helicopter Captive Flight Test)

  • 최장섭
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.779-788
    • /
    • 2013
  • The load requirements should be known to design mechanical structure. This paper proposes a generation method of load requirements using U.S. military specification to design the external mounting structure of the helicopters of which the flight environments such as aerodynamic forces and inertia forces are unknown. In this study, the load requirements which were applied at the design of the pod structure for helicopter captive flight test could be computed by using this method. The validation of proposed method was confirmed from the test flight using developed pod system.

특징형상을 이용한 선각설계

  • 이경식;최영;강원수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.559-564
    • /
    • 1995
  • Feature based design approach is widely studied for the application of mechanical part design and process planning. Mechanical parts are associated with volumetric form features in nature. Therfore, one of the important characteristics that reside in the form feature research until now is that features have been studied in connection with CAPP for material removal. We studied the application of feature based design for ship structure design. Ship structure has interesting nature that tis distinct from mechanical parts. Among these are multiple cell structure, non-volumetric part and production by welding or assembling. An idea of applying feature based design paradigm for design, process planning, cost analysis and engineering calculation was shown. Non-manifold geometric modeler ACIS was adopted to fully benefit from the non-manifold nature of ship structure.

Big data-based piping material analysis framework in offshore structure for contract design

  • Oh, Min-Jae;Roh, Myung-Il;Park, Sung-Woo;Chun, Do-Hyun;Myung, Sehyun
    • Ocean Systems Engineering
    • /
    • 제9권1호
    • /
    • pp.79-95
    • /
    • 2019
  • The material analysis of an offshore structure is generally conducted in the contract design phase for the price quotation of a new offshore project. This analysis is conducted manually by an engineer, which is time-consuming and can lead to inaccurate results, because the data size from previous projects is too large, and there are so many materials to consider. In this study, the piping materials in an offshore structure are analyzed for contract design using a big data framework. The big data technologies used include HDFS (Hadoop Distributed File System) for data saving, Hive and HBase for the database to handle the saved data, Spark and Kylin for data processing, and Zeppelin for user interface and visualization. The analyzed results show that the proposed big data framework can reduce the efforts put toward contract design in the estimation of the piping material cost.

3차원 유연구조물에 대한 구조-제어 통합설계 (Structure-Control Combined Design for 3-D Flexible Structure)

  • 박중현
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.109-114
    • /
    • 2004
  • A combined optimal design problem of structural and control systems is discussed by taking a 3-D flexible structure as an object. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI). By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of combined optimal design of structural and control systems.

내부 압력을 받는 구조물의 용접 부 설계 검증 (Weld Zone Design Verification of Structure which is Receiving Internal Pressure)

  • 박정선;임종빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1425-1429
    • /
    • 2003
  • In this study, when structure which is combined by welding is receiving internal pressure, finite element analysis to confirm stability of structure and reliability of welding part is achieved. And we analyze the results. Also, if stability of the structure and reliability of the welding part are not defined, research that look for method to change design to receive stability and reliability is achieved.

  • PDF

하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화 (Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.

공학 시스템 설계를 위한 체계적인 개념 설계 프로세스 구조 개발 (Structure Development of Systematic Conceptual Design Process for Designing Engineering Systems)

  • 박용택;국금환
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.86-94
    • /
    • 2007
  • The design process must be planned carefully and executed systematically in order to support designers who are faced with many engineering design problems. In particular, conceptual design stage is very important than other stages such as detailed design or manufacturing stage on designing engineering systems. When designers are faced contradictory situation in task, conceptual design usually requires inventive thinking which depends on their creativity. And in order to develop good concepts, it is necessary to resolve contradictory situations during conceptual design. This paper presents a structure of systematic conceptual design process for designing engineering systems. And we developed the automatic feeding screw device using the proposed design process structure.