• 제목/요약/키워드: Design parameters of tunnel

검색결과 252건 처리시간 0.023초

자동차 공력저항 예측 프로그램 개발 및 형상인자의 최적화 (Development of a Predicting Program of Vehicle Aerodynamic Drag and Optimization of Shape Parameters)

  • 한석영;맹주성;김무상;박재용
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.223-227
    • /
    • 2002
  • Wind tunnel test or CFD is used for predicting aerodynamic drag coefficient in domestic motor companies. But, wind tunnel test requires much cost and time, and CFD has a relatively large error. In this study a predicting program of the aerodynamic drag coefficient based on empirical techniques was developed. Also GRG method was added to the program in order to decide optimal values of some parameters. The program was applied to 24 cars and the aerodynamic drag coefficients were predicted with 4.82% average error. Optimization was also accomplished to 6 cars. Some parameters to be modified were determined (1) to reduce the afterbody drag coefficient to the value established by a designer and (2) to preserve the same drag coefficient as the original automotive when some parameters have to be changed in the viewpoint of design. It was verified that the developed program can predict the aerodynamic drag coefficient appropriately and determine optimal values of some parameters.

Three-Dimensional Modelling and Sensitivity Analysis for the Stability Assessment of Deep Underground Repository

  • Kwon, S.;Park, J.H.;Park, J.W.;Kang, C.H.
    • Nuclear Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.605-618
    • /
    • 2001
  • For the mechanical stability assessment of a deep underground high-level waste repository. computer simulations using FLAC3D were carried out and important parameters including stress ratio, depth, tunnel size, joint spacing, and joint properties were chosen from sensitivity analysis. The main effect as well as the interaction effect between the important parameters could be investigated effectively using fractional factorial design . In order to analyze the stability of the disposal tunnel and deposition hole in a discontinuous rock mass, different modelings were performed under different conditions using 3DEC and the influence of joint distribution and properties, rock properties and stress ratio could be determined. From the three dimensional modelings, it was concluded that the conceptual repository design was mechanically stable even in a discontinuous rock mass.

  • PDF

Umbrella Arch 공법이 적용된 터널의 3차원 유한요소 해석에 관한 연구 (A Study on the Three Dimensional Finite Element Analysis for the Tunnel Reinforced by Umbrella Arch Method)

  • 김창용;배규진;문현구;최용기
    • 터널과지하공간
    • /
    • 제8권3호
    • /
    • pp.209-225
    • /
    • 1998
  • 최근터널 굴착 보조공법중의 하나인 강관 보강형 다단 그라우팀 공법(Umbrella Arch Method, UAM)은 지반을 보강하고 터널 막장의 안정성을 증진시키기 위해서 많은 현장에서 사용되고 있다. 이러한 UAM은 터널 보강목적의 forepoling과 차수목적으 grouting이 한 공정으로 구성되어 있다는 잇점 때문에, 최근 국내 지하철, 도로터널 및 전력구터널 등에서 많은 적용 사례를 찾아 볼 수 있다. 그러나 이 공법은 주로 현장 시공을 통해서 얻어진 경험적인 방법에 의해서 설계와 시공이 이루어지고 있기 때문에 본 공법에 대한 보다 정량적이고 체계적인 설계인자 평가 작업이 필요하다. 따라서, 본 연구에서는 수치해석 방법에 의한 체계적이고 정량적인 효과확인 과정을 제안하였고, 몇몇 설계인자에 대한 매개변수 변환연구를 수행하였다. 이를 위해서 먼저, UAM의 지반보강기구에 있어서 관련된 강관, 그라우트재 및 강지보재등의 역할을 밝히고자 하였고, 두 번째로 매개변수 변환연구를 통해 UAM의 설계 제요소들에 대한 영향을 평가하기 위해 1)지반조건별, 2) 토피고별, 3) 강관배치형상별, 4) 그라우트 영역별, 5)강관자체 특성별 해석을 수행하여 각 항목별로 상호 비교.분석하였다.

  • PDF

수직 탄성파탐사를 응용한 터널 전방의 불연속면 예측과 암반 물성 파악 (Prediction of Discontinuity and Determination of Rock Property ahead of Tunnel Face by VSP application)

  • 남기천;이진무;차성수
    • 터널과지하공간
    • /
    • 제5권3호
    • /
    • pp.214-222
    • /
    • 1995
  • Geological events which are undetected by the surface geophysical or geological survey phase can cause many problems, especially when the tunnel is excavated by TBM. To detect the geological events ahead of tunnel face, a seismic method applied from VSP method is used. Generally uniaxial geophone has been used in surface seismic survey. But this time, triaxial geophone is used to reduce the noise of tunnel wave. DME(Dip moveout Enhancement) filter and diffraction stack method are used. Applying these techniques to the road tunnel in construction, it is proved that the geological events ahead of tunnel face is fairly well predicted. From the seismic trace, Vp and Vs which are related to the rock property can be also obtained. Rock property and proper support design can be dedced from these parameters.

  • PDF

확장챔버를 적용한 방호터널 내부의 CFD 해석 기반 폭발압력 평가 (CFD-Based Overpressure Evaluation Inside Expansion Chamber-Applied Protective Tunnels Subjected to Detonation of High Explosives)

  • 신진원;방승기
    • 한국공간구조학회논문집
    • /
    • 제23권1호
    • /
    • pp.25-34
    • /
    • 2023
  • This paper presents a computational fluid dynamics (CFD) analysis to investiagate the effect of expansion chamber on overpressure reduction in protective tunnels subjected to detonation of high explosives. A commercial CFD code, Viper::Blast, was used to model the blast waves in a protective tunnel with a length of 160 m, width of 8.9 m and height of 7.2 m. Blast scenarios and simulation matrix were establihsed in consideration of the design parameters of expansion chamber, including the chamber lengths of 6.1 m to 12.1 m, widths of 10.7 m to 97 m, length to width ratios of 0.0 to 5.0, heights of 8.0 m and 14.9 m, and ratios of chamber to tunnel width of 1.2 to 10.9 m. A charge weight of TNT of 1000 kg was used. The mesh sizes of the numerical model of the protective tunnel were determined based on a mesh convergence study. A parametric study based on the simulation matrix was performed using the proposed CFD tunnel model and the optimized shape of expansion chamber of the considered tunnel was then proposed based on the numerical results. Design recommendations for the use of expansion chamber in protective tunnel under blast loads to reduce the internal overpressures were finally provided.

병설터널 굴착시 필라부의 보강을 고려한 안정성 평가기법 (Stability Estimation Method for Pillar Considering the Reinforcement Method during Twin-Tunnel Excavation)

  • 장부식;황정순;류준원;이응기;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.980-987
    • /
    • 2006
  • Recently, twin-tunnel is often designed considering the aspects of disaster prevention and economic reasons. However, the design cases and the studies are relatively insufficient. By the twin-tunnel excavation, deviate stresses of pillar between tunnels are increased and the increased stresses induce the instability of the twin-tunnel. In this study, numerical analyses about the twin-tunnel behaviour are conducted while varying ground strength, width of pillar and depth of earth cover and a series of regression analyses are carried out by using the results of numerical analyses for the twin-tunnel. Based on the numerical analyses, an estimation method of derived stresses is suggested though the regression analyses. Also, based on the results of regression analyses, an quantitative estimation method considering the reinforcement effects is also suggested. Then various parametric studies are conducted to be considered the reinforcement type and various design parameters. Finally, the efficiency of the suggested method is verified through the results of parametric studies.

  • PDF

Behavior analysis of aerial tunnel maintenance truss platform with high tensile steel UL-700

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.383-391
    • /
    • 2017
  • The goal of this study is to investigate structural analysis and behaviors of an innovative aerial work platform truss frame whose ductility is improved by using high strength-steel UL-700. The present space truss frame can move or stop through tunnels for maintenance constructions by automatic facilities and workmanship within standardized limited building lines of tunnel. Most of all, this method overcomes problematic, which is to block cars during construction periods, seriously, of typical methods like as using truck and scaffolds for tunnel maintenance. According to evaluated appropriate design results of space truss frames of numerical examples by using a commercial MIDAS GEN program, it is verified that design parameters such as layered size, cross-sectional size, and steel material of the present space truss frame are determined to depend on characteristics such as lanes or shape of road tunnels.

Behavior analysis of aerial tunnel maintenance truss platform with high tensile steel UL-700

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.513-521
    • /
    • 2017
  • The goal of this study is to investigate structural analysis and behaviors of an innovative aerial work platform truss frame whose ductility is improved by using high strength-steel UL-700. The present space truss frame can move or stop through tunnels for maintenance constructions by automatic facilities and workmanship within standardized limited building lines of tunnel. Most of all, this method overcomes problematic, which is to block cars during construction periods, seriously, of typical methods like as using truck and scaffolds for tunnel maintenance. According to evaluated appropriate design results of space truss frames of numerical examples by using a commercial MIDAS GEN program, it is verified that design parameters such as layered size, cross-sectional size, and steel material of the present space truss frame are determined to depend on characteristics such as lanes or shape of road tunnels.

Investigations of countermeasures used to mitigate tunnel deformations due to adjacent basement excavation in soft clays

  • Jinhuo Zheng;Minglong Shen;Shifang Tu;Zhibo Chen;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • 제36권6호
    • /
    • pp.563-573
    • /
    • 2024
  • In this study, various countermeasures used to mitigate tunnel deformations due to nearby multi-propped basement excavation in soft clay are explored by three-dimensional numerical analyses. Field measurements are used to calibrate the numerical model and model parameters. Since concrete slabs can constrain soil and retaining wall movements, tunnel movements reach the maximum value when soils are excavated to the formation level of basement. Deformation shapes of an existing tunnel due to adjacent basement excavation are greatly affected by relative position between tunnel and basement. When the tunnel is located above or far below the formation level of basement, it elongates downward-toward or upward-toward the basement, respectively. It is found that tunnel movements concentrate in a triangular zone with a width of 2 He (i.e., final excavation depth) and a depth of 1 D (i.e., tunnel diameter) above or 1 D below the formation level of basement. By increasing retaining wall thickness from 0.4 m to 0.9 m, tunnel movements decrease by up to 56.7%. Moreover, tunnel movements are reduced by up to 80.7% and 61.3%, respectively, when the entire depth and width of soil within basement are reinforced. Installation of isolation wall can greatly reduce tunnel movements due to adjacent basement excavation, especially for tunnel with a shallow burial depth. The effectiveness of isolation wall to reduce tunnel movement is negligible unless the wall reaches the level of tunnel invert.

Numerical modelling of internal blast loading on a rock tunnel

  • Zaid, Mohammad;Sadique, Md. Rehan
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.417-443
    • /
    • 2020
  • Tunnels have been an integral part of human civilization. Due to complexity in its design and structure, the stability of underground structures under extreme loading conditions has utmost importance. Increased terrorism and geo-political conflicts have forced the engineers and researchers to study the response of underground structures, especially tunnels under blast loading. The present study has been carried out to seek the response of tunnel structures under blast load using the finite element technique. The tunnel has been considered in quartzite rock of northern India. The Mohr-Coulomb constitutive model has been adopted for the elastoplastic behaviour of rock. The rock model surrounding the tunnel has dimensions of 30 m x 30 m x 35 m. Both unlined and lined (concrete) tunnel has been studied. Concrete Damage Plasticity model has been considered for the concrete lining. Four different parameters (i.e., tunnel diameter, liners thickness, overburden depth and mass of explosive) have been varied to observe the behaviour under different condition. To carry out blast analysis, Coupled-Eulerian-Lagrangian (CEL) modelling has been adopted for modelling of TNT (Trinitrotoluene) and enclosed air. JWL (Jones-Wilkins-Lee) model has been considered for TNT explosive modelling. The paper concludes that deformations in lined tunnels follow a logarithmic pattern while in unlined tunnels an exponential pattern has been observed. The stability of the tunnel has increased with an increase in overburden depth in both lined and unlined tunnels. Furthermore, the tunnel lining thickness also has a significant effect on the stability of the tunnel, but in smaller diameter tunnel, the increase in tunnel lining thickness has not much significance. The deformations in the rock tunnel have been decreased with an increase in the diameter of the tunnel.