• Title/Summary/Keyword: Design of heat exchanger

Search Result 682, Processing Time 0.081 seconds

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.

Design Criteria Derivation of Supercritical Carbon Dioxide Power Cycle based on Levelized Cost of Electricity(LCOE) (전력단가추정기반 초임계 이산화탄소 발전 시스템 최적 설계 인자 도출)

  • Park, Sungho;Cha, Jaemin;Kim, Joonyoung;Shin, Junguk;Yeom, Choongsub
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • The economic analysis for the power plant developed in the conceptual design phase is becoming more important and, research on process optimization for process development that meets the target economic is actively carried out. In the filed of power generation systems, economic assessment methods to predict the levelized cost of electricity (LCOE) has been widely applied for comparing economic effect quantitatively. In this paper, the platform that design criteria of key component required to optimize economic of power cycle can be calculated reversely was established roughly and design criteria of the key equipment (Compressor, turbine, heat exchanger) required to meet the target LCOE (the LCOE of supercritical steam Rankine cycle) was derived when the supercritical $CO_2$ power cycle is applied to the coal-fired power plant.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Experimental Study of a Recuperator with Offset Strip Fins (오프셋 스트립 휜을 가지는 리큐퍼레이터에 대한 실험적 연구)

  • Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Choi, Byung-Il;Kim, Myungbae
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.72-78
    • /
    • 2015
  • In the present study, a recuperator to improve the thermal efficiency of a micro gas turbine is considered. The counter flow plate-fin heat exchanger with offset strip fins is chosen as the type of the recuperator. From the optimization study as varying design parameters of the recuperator determined from the ideal cycle analysis, the internal structure of the recuperator is determined. The recuperator is made from stainless steel 304. In order to evaluate performance of the recuperator, experimental investigation is performed. The effects of inlet temperature of hot-side of the recuperator on the thermal performance of the recuperator are investigated. As a result, effectiveness of the recuperator obtained from the experiments is well consistent with that obtained from the correlations.

A DYNAMIC SIMULATION OF THE SULFURIC ACID DECOMPOSITION PROCESS IN A SULFUR-IODINE NUCLEAR HYDROGEN PRODUCTION PLANT

  • Shin, Young-Joon;Chang, Ji-Woon;Kim, Ji-Hwan;Park, Byung-Heung;Lee, Ki-Young;Lee, Won-Jae;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.831-840
    • /
    • 2009
  • In order to evaluate the start-up behavior and to identify, through abnormal operation occurrences, the transient behaviors of the Sulfur Iodine(SI) process, which is a nuclear hydrogen process that is coupled to a Very High Temperature Gas Cooled Reactor (VHTR) through an Intermediate Heat Exchanger (IHX), a dynamic simulation of the process is necessary. Perturbation of the flow rate or temperature in the inlet streams may result in various transient states. An understanding of the dynamic behavior due to these factors is able to support the conceptual design of the secondary helium loop system associated with a hydrogen production plant. Based on the mass and energy balance sheets of an electrodialysis-embedded SI process equivalent to a 200 $MW_{th}$ VHTR and a considerable thermal pathway between the SI process and the VHTR system, a dynamic simulation of the SI process was carried out for a sulfuric acid decomposition process (Second Section) that is composed of a sulfuric acid vaporizer, a sulfuric acid decomposer, and a sulfur trioxide decomposer. The dynamic behaviors of these integrated reactors according to several anticipated scenarios are evaluated and the dominant and mild factors are observed. As for the results of the simulation, all the reactors in the sulfuric acid decomposition process approach a steady state at the same time. Temperature control of the inlet helium is strictly required rather than the flow rate control of the inlet helium to keep the steady state condition in the Second Section. On the other hand, it was revealed that the changes of the inlet helium operation conditions make a great impact on the performances of $SO_3$ and $H_2SO_4$ decomposers, but no effect on the performance of the $H_2SO_4$ vaporizer.

Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy (액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석)

  • Lee Geun Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

Required Pressurant Mass for Cryogenic Propellant Tank with Pressurant Temperature Variation (가압가스 온도에 따른 극저온 추진제탱크 가압가스 요구량)

  • Kwon, Oh-Sung;Kim, Byung-Hun;Cho, In-Hyun;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1202-1208
    • /
    • 2010
  • The prediction of the required pressurant mass for maintaining the pressure of propellant tanks during propellant feeding is an important issue in designing pressurization system. The temperature of pressurant fed into propellant tank is the critical factor in the required pressurant mass and is one of the most crucial design parameters in the development of pressurization system including designing the weight of pressurant tanks and the size of heat exchanger. Hence a series of propellant drainage tests by pressurizing propellant stored in a cryogenic propellant tank have been performed with measuring the temperature distribution inside ullage and the required pressurant mass according to the temperature condition of pressurant. Results shows that the required pressurant mass decreases as the temperature of pressurant increases. However, the rate of the actual pressurant mass to the ideal required pressurant mass increases.

Prediction on Maximum Performance of Cascade Refrigeration System Using R717 and R744 (R718-R744용 캐스케이드 냉동시스템의 최대 성능 예측)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2565-2571
    • /
    • 2009
  • In this paper, cycle performance analysis of cascade refrigeration system using $NH_3-CO_2$(R717-R744) is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and condensing and evaporating temperature in the ammonia(R717) high temperature cycle and the carbon dioxide low temperature cycle. The COP of cascade refrigeration system increases with the increasing superheating degree, but decreases with the increasing subcooling degree. The COP of cascade refrigeration system increases with the increasing condensing temperature, but decreases with the increasing evaporating temperature. Therefore, superheating and subcoolng degree, evaporating and condensing temperature of cascade refrigeration system using $NH_3-CO_2$ have an effect on the COP of this system. A multilinear regression analysis was employed in terms of subcooling, superheating, evaporating, condensing, and cascade heat exchanger temperature difference in order to develop mathematical expressions for maximum COP and an optimum evaporating temperature.

Design of Commercial 2,3-Butanediol Dehydration Reaction System Considering Safety (안전을 고려한 상용 2,3-Butanediol 탈수반응 시스템 설계)

  • Song, Daesung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.581-587
    • /
    • 2020
  • In this study, a new reaction system is proposed to solve the problems of the existing 2,3-Butanediol (2,3-BDO) dehydration reaction system. It was confirmed that the reaction system did not wok as it should operate properly when using a furnace, which is commonly used in commercial processes, to raise the reactant, 2,3-BDO, to the reaction temperature, 360 ℃, at near atmoshperic pressure. It is because of the substance considered to be oligomers of 2,3-BDO. It can lead to safety problems, such as blockages inside the furnace's tube and explosions, as well as tricky maintenance issues in the reaction system. To solve it, the temperature of reactant can be brought down by using a heat exchanger with High Pressure (HP) steam instead of the furnace, which has a hot spot problem through the vacuum operation and reduce the reaction temperature. It can be seen that the reactor performance is almost similar under the vacuum operation and the lower reaction temperature, 330 ℃, by using a reaction kinetics. This result explains why the new reaction system is proposed.

Development of Eddy Current Test Probe for Profilometry Inspection of Tube (원형튜브 단면형상검사용 와전류탐촉자 개발)

  • Lee, H.J.;Nam, M.W.;Lee, C.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.262-269
    • /
    • 1997
  • An eddy current probe ($8{\times}1$ multiple-element, surface scan) was successfully designed and fabricated at the KEPRI using the impedance equivalent circuit theory. The probe is intended for the detection of circumferential deformations (cross-section view) of the heat exchanger tubing that can occur due to corrosion, erosion, and denting. Optimum design parameters providing the highest sensitivity and signal-to-noise ratio, such as the coil dimensions, electrical characteristics, and test frequencies, were determined based on initial laboratory experiments conducted on the test specimen (SS304 tubing: OD : 9.68mm, wall-thickness : 0.47mm) containing artificial flaws (e.g., dents and corroded surface on tube OD) using the available Zetec-made probe. Using this parameters, a new probe was made and tested on an unknown specimen. The result indicated that the new probe is capable of detecting the circumferential deformation with the error of ${\pm}0.2%$ (0.022mm) of the tube O.D.

  • PDF