• 제목/요약/키워드: Design of Disk Brake

검색결과 47건 처리시간 0.026초

실험계획법에 기반한 브레이크 스퀼 노이즈 저감을 위한 강건 설계 (The DOE Based Robust Design to Reduce the Brake Squeal Noise)

  • 권성진;김문성;이봉현;이동원;배철용;김찬중
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.126-134
    • /
    • 2007
  • Although there has been substantial research on the squeal noise for the automotive brake system, robust design issues with respect to control factors equivalent to design variables in optimization, noise factors due to system uncertainties, and signal factors designed to accommodate a user-adjustable setting still need to be addressed. For the purpose, the robust design applied to the disk brake system has been investigated by DOE (Design of Experiments) based Taguchi analysis with dynamic characteristics. The specific goal of this methodology is to identify a design with linear signal-response relationship, and variability minimization. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. As the practical robust design to reduce the brake squeal noise, material properties of pad, disk, and backplate, thickness and geometry of pad are selected as control factors, material properties of pad and disk, and the contact stiffness have been considered as noise factors, and friction coefficient between pad and disk is chosen as a signal factor. Through the DOE based robust design, the signal-to-noise ratio and the sensitivity for each orthogonal array experiment have been analyzed. Also, it has been proved that the proposed robust design is effective and adequate to reduce the brake squeal noise.

Thermo-Elastic Analysis for Chattering Phenomenon of Automotive Disk Brake

  • Cho, Chongdu;Ahn, Sooick
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.569-579
    • /
    • 2001
  • This study investigates the effects of operating conditions on the chattering of an automotive disk brake by experimental and computational methods. Design factors, which cause chattering in automobiles, have attracted great attentions for long time; but they are not well understood yet. For this study, we construct a brake dynamometer for measuring the disk surface temperature during chattering, and propose an efficient hybrid algorithm (combining FFT-FEA and traditional FEA program) for analyzing the thermo-elastic behavior of three-dimensional brake system. We successfully measure the judder in a brake system via the dynamometer and efficiently simulate the contact pressure variation by the hybrid algorithm. The three-dimensional simulation of thermo-mechanical interactions on the automotive brake, showing the transient thermo-elastic instability phenomenon, is presented for the first time in this academic community. We also find from the experimental study that the disk bulk temperature strongly influences the brake chattering in the automotive disk brakes.

  • PDF

디스크 정렬불량에 기인한 브레이크 스퀼소음 (Brake Squeal Noise Due to Disk Misalignment)

  • 박주표;최연선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1690-1695
    • /
    • 2003
  • In order to investigate the mechanism of brake squeal noise, the sound and vibration of an actua1 brake system were measured using a brake dynamometer. The experimental results show that disc run-out varies with brake line pressure and the factor of squeal generation is the run-out due to the misalignment of brake disk. A three degrees of freedom friction model is developed for the disk brake system where the run-out effect and nonlinear friction characteristic are considered. The results of numerical analysis of the model agree well with the experimental results. Also, the stability analysis of the model was performed to predict the generation of brake squeal due to the design parameter modification of brake systems. The results show that the squeal generation depends on the nm-out rather than the friction characteristic between the pad and the disk of brake.

  • PDF

크리깅기법을 이용한 전륜 디스크 브레이크 모델의 스퀼 저감 해석 (Analysis of the Front Disk Brake Squeal Using Kriging Method)

  • 심현진;박상길;김흥섭;오재응
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1042-1048
    • /
    • 2008
  • Disc brake noise is an important customer satisfaction and warranty issue for many manufacturers as indicated by technical literature regarding the subject coming from Motor Company. This research describes results of a study to assess disk brake squeal propensity using finite element methods and optimal technique (Kriging). In this study, finite element analysis has been performed to determine likely modes of brake squeal. This paper deals with friction-induced vibration of disc brake system under contact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigen-values are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model. In this paper, Kriging from among the meta-modeling techniques is proposed for an optimal design scheme to reduce the brake squeal noise.

유한요소법을 이용한 disk-brake piston의 공정설계 (Application of FEM to the Forming Process of Disk-Brake Piston)

  • 황병복;이호용
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.178-188
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic FEM has been applied to simulate the conventional four stage manufacturing processes, which include deep drawing and forging process. Simulation of one stage process from a selected stock to the final product shape is performed for generating information on additional requirements for metal flow. Two stage forming processes with different punch corner and nose geometries are also simulated to identify the possible best solutions. Finally, the best manufacturing process is selected, which is using a hemispherical punch int he deep drawing process.

  • PDF

마찰면의 압력 분포를 고려한 제동디스크의 열응력 해석 (Thermal Stress Analysis for a Brake Disk considering Pressure Distribution at a Frictional Surface)

  • 이영민;박재실;석창성;이찬우;김재훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.842-846
    • /
    • 2005
  • A brake disk and a pad are important parts that affect the braking stability of a railway vehicle. Especially, because a brake disk stops the vehicle using conversion of the kinetic energy to frictional energy, thermal fatigue cracks are generated by the cyclic thermal load, as frictional heat, on a frictional surface and these cracks cause the fracture of a brake disk. Therefore, many researches for the thermal stress must be performed to improve the efficiency of brake disk and ensure the braking stability. In this study, we performed the thermal stress analysis for a ventilated brake disk with 3-D analysis model. For that, we simplified the shape of a ventilated hole to minimize problems that could be occurred in analysis process. Thermal stress analysis was performed in case that pressure distributions on a frictional surface is constant and is not. To determine pressure distributions of irregular case, pressure distribution analysis for a frictional surface was carried out. Finally using the results that were obtained through pressure distribution analysis, we carried out thermal stress analysis of each case and investigated the results of thermal stress analysis.

  • PDF

실험계획법과 유한요소해석에 의한 디스크 브레이크의 열변형 최적설계 (Optimal Design for the Thermal Deformation of Disk Brake by Using Design of Experiments and Finite Element Analysis)

  • 이태희;이광기;정상진
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1960-1965
    • /
    • 2001
  • In the practical design, it is important to extract the design space information of a complex system in order to optimize the design because the design contains huge amount of design conflicts in general. In this research FEA (finite element analysis) has been successfully implemented and integrated with a statistical approach such as DOE (design of experiments) based RSM (response surface model) to optimize the thermal deformation of an automotive disk brake. The DOE is used for exploring the engineer's design space and for building the RSM in order to facilitate the effective solution of multi-objective optimization problems. The RSM is utilized as an efficient means to rapidly model the trade-off among many conflicting goals existed in the FEA applications. To reduce the computational burden associated with the FEA, the second-order regression models are generated to derive the objective functions and constraints. In this approach, the multiple objective functions and constraints represented by RSM are solved using the sequential quadratic programming to archive the optimal design of disk brake.

모터싸이클 브레이크 디스크의 열 해석에 관한 연구 (A Study on Thermal Analysis of Motorcycle Brake Disk)

  • 류미라;김영희;변상민;박흥식
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.34-40
    • /
    • 2009
  • The effect of frictional factors on thermal stress and deformation volume of motorcycle brake disk was studied by using a disk-on-pad type friction tester. It has an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors. In this study, thermal stress and deformation volume by using design of experiment with 4 elements were investigated for thermal analysis with regression analysis. Thermal stress and thermal deformation are obtained by the application of temperature from mechanical test. From this study, the result showed that the motorcycle brake disk with ventilated hole 3 had the most excellent thermal stress and deformation volume. The regression equation had a trust rate of 95% for the prediction of thermal stress and deformation volume of motorcycle brake disk was composed.

  • PDF

브레이크 디스크 구조 형상별 내구성 해석 (Durability Analysis by Shape of Brake Disk Structure)

  • 한문식;조재웅
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.36-44
    • /
    • 2013
  • This study investigates life, damage and durability through the analyses of fatigue load and vibration on disk brake models of A, B and C. Maximum equivalent stress is happened at the inside of disk brake on these models. As there are A, B and C models by order of life, model A has the most stable strength on fatigue analysis, The deformations at 3 kinds of models become nearly same on natural frequency analysis. The maximum total deformation and equivalent stress is shown at 1617Hz by harmonic vibration analysis on these models. As there are A, B and C models by order of deformation and stress, model A becomes lowest and safest. This study result can be effectively utilized with the design of brake disk in order to improve durability and prevention against its fatigue damage and vibration.

철도 차량용 제동디스크의 열응력 해석 (Thermal Stress Analysis for a Ventilated Disk Brake of Railway Vehicles)

  • 이영민;박재실;석창성;이찬우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1617-1621
    • /
    • 2005
  • In this study, as a basic research to improve braking efficiency of a ventilated disk brake, we carried out a thermal stress analysis. From analysis result, we knew that a maximum mechanical stress by braking pressure and friction force is applicable to 5 percent of yield strength and has no effect on a fatigue life's decrease for brake disk material. While, a maximum thermal stress by frictonal heat is applicable to 43 percent of yield strength and locates on a friction surface. So, we have found that a thermal stress is the primary factor of crack initiation on a friction surface of disk brake

  • PDF