• 제목/요약/키워드: Design moments

검색결과 516건 처리시간 0.028초

EN 1991-2 traffic loads design charts for closed rib orthotropic deck plate based on Pelikan-Esslinger method

  • Vlasic, Andjelko;Radic, Jure;Savor, Zlatko
    • Steel and Composite Structures
    • /
    • 제9권4호
    • /
    • pp.303-323
    • /
    • 2009
  • Charts for the bending moments in the closed rib orthotropic deck plate are derived, based on the method originally introduced by Pelikan and Esslinger. New charts are done for EN 1991-2 traffic load distribution schemes. The governing Huber plate equation is solved utilizing Fourier series for various bridge deck plate boundary conditions. Bending moments are given as a function of deck plate rigidities and span length between cross beams. Old diagrams according to DIN 1072, the new ones according to EN 1991-2 and FE analyses results are compared. For typical bridge orthotropic deck plates, it can be concluded that the new EN 1991-2 traffic loads produce larger mid-span bending moments when two lane schemes are used, then those of DIN 1072. For support moments, DIN 1072 gives larger values for any number of lanes, especially under span lengths of 5m. The relevant differences are up to 25%.

MSS공법으로 시공되는 교량의 설계 모멘트 결정 (Determination of Design Moments in Bridges Constructed by Movable Scaffolding System)

  • 곽효경;손제국
    • 한국전산구조공학회논문집
    • /
    • 제14권3호
    • /
    • pp.317-327
    • /
    • 2001
  • 이 논문에서는 이동식 지보를 이용한 MSS공법에 의해 건설되는 콘크리트 교량의 설계 모멘트를 산정하기 위한 관계식을 제안하고 있다. 각 시공 단계에 따른 시간 의존적 거동해석을 통해 교량의 부재력 변화와 처짐 변화를 고찰하였으며 변위와 하중조건을 토대로 한 지배방정식을 구성한 후 복잡한 장기 거동 해석 없이 탄성 해석 결과를 토대로 설계 부재력과 임의의 시간 경과 후 모멘트 변화를 예측할 수 있는 관계식을 구성하였다. 나아가 다양한 예제 해석을 통해 제안한 관계식의 적용성을 검증하였으며 모멘트 포락선을 토대로 보다 합리석인 설계 부재력의 산정 방안을 소개하였다.

  • PDF

강건 최적설계에서 통계적 모멘트와 확률 제한조건에 대한 효율적인 민감도 해석 (The Efficient Sensitivity Analysis on Statistical Moments and Probability Constraints in Robust Optimal Design)

  • 허재성;곽병만
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.29-34
    • /
    • 2008
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliability-based design optimization are examples of the most famous methodologies. In their formulation, the mean and standard deviation of a performance function and constraints expressed by probability conditions are involved. Therefore, it is essential to effectively and accurately calculate them and, in addition, the sensitivity results are required to obtain when the nonlinear programming is utilized during optimization process. We aim to obtain the new and efficient sensitivity formulation, which is based on integral form, on statistical moments such as the mean and standard deviation, and probability constraints. It does not require the additional functional calculation when statistical moments and failure or satisfaction probabilities are already obtained at a design point. Moreover, some numerical examples have been calculated and compared with the exact solution or the results of Monte Carlo Simulation method. The results seem to be very satisfactory.

고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정(II) - L-모멘트법을 중심으로 - (Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques(l ) - On the method of L-moments-)

  • 이순혁;박종화;류경식
    • 한국농공학회지
    • /
    • 제43권5호
    • /
    • pp.70-82
    • /
    • 2001
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the Generalized extreme value distribution among applied distributions. Regional and at-site parameters of the generalized extreme value distribution were estimated by the linear combination of the probability weighted moments, L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the legions and consecutive durations were derived by the regional frequency analysis.

  • PDF

횡하중에 대한 휨재의 부모멘트 재분배 (Redistribution of Negative Moments in Beams Subjected to Lateral Load)

  • 엄태성
    • 콘크리트학회논문집
    • /
    • 제23권6호
    • /
    • pp.731-740
    • /
    • 2011
  • KCI 2007, ACI 318-08에 제시된 모멘트재분배 방법은 등분포 중력하중을 받는 연속 휨재에 대하여 검증된 방법이다. 횡하중에 의한 모멘트재분배 및 비탄성 거동은 중력하중과 전혀 다른 메커니즘을 발생된다. 이 연구에서는 기초역학에 근거하여 중력하중과 횡하중을 받는 철근콘크리트 모멘트골조의 보에 발생되는 모멘트재분배와 소성변형의 관계를 정량화하고, 이로부터 보의 소성변형능력에 근거한 모멘트재분배 설계법을 제안하였다. 제안된 모멘트재분배비는 KCI 2007, ACI 318-08 등 기존 설계기준과 마찬가지로 극한한계상태의 단면해석으로 결정되는 철근의 인장변형률로 정의된다. 또한 모멘트재분배비는 경간, 철근비, 단면강성, 변형경화 거동에 의하여 영향을 받는다. 제안된 방법을 사용하여 탄성해석으로 구한 설계모멘트를 재분배시키는 설계 가이드라인 및 예제를 제시하였다.

비정규 분포에 대한 통계적 모멘트와 확률 제한조건의 민감도 해석 (Expansion of Sensitivity Analysis for Statistical Moments and Probability Constraints to Non-Normal Variables)

  • 허재성;곽병만
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1691-1696
    • /
    • 2010
  • 설계단계에서 시스템의 불확실성을 반영하려는 노력이 다양하게 이루어지고 있으며, 강건 최적설계 혹은 신뢰도 기반 최적설계는 이에 대한 대표적인 설계 방법론이다. 이러한 최적화 수식에는 성능함수의 평균, 표준편차와 확률제한조건이 목적함수와 제한조건으로 주로 활용된다. 그러므로, 이러한 통계적 특성치를 효과적으로 계산하는 것은 필수적이며, 더 나아가 최적화 과정에서 비선형 계획법이 일반적으로 활용되므로 민감도가 반드시 필요하다. 본 연구에서는 통계적 모멘트와 확률제한조건에 대해 적분 형태로 정의되는 민감도 수식을 비정규 분포로 확장하고자 한다. 얻어진 민감도 해석 결과는 통계적 모멘트와 손상확률이 설계점에서 계산된 경우, 민감도를 얻기 위해 추가로 성능함수를 계산할 필요가 없음을 보여주므로 효율성 측면에서 우수하다. 그러나, 민감도 수식이 성능함수와 확률밀도함수의 미분과정에서 얻어지는 함수의 곱으로 정의되므로, 동일한 수치적분 방법이 적용되는 경우 민감도 해석 결과는 통계적 모멘트 결과의 정확도에 미치지 못할 가능성이 있다.

축구화 스터드 형태에 따른 무릎 모멘트의 변화 (Changes in Knee Joint Loading on Infilled Turf with Different Soccer Cleat Designs)

  • 박상균;이중숙;박승범
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.369-377
    • /
    • 2009
  • The purpose of this study was to determine the relationship between different soccer cleat designs and knee joint moments. Twelve physically active males (mean(SD): age: 26.4(6.2)yrs; height: 176.4(4.1)cm; mass: 74.0 (7.4)kg) were recruited Kinematic and force plate data were collected for all subjects during normal running and a $45^{\circ}$ cutting maneuver, called a v-cut. Both motions were performed at $4.0{\pm}0.2\;m/s$ on infilled artificial turf with three pairs of soccer cleats of different sole plate designs, and one pair of neutral running shoes. Inverse dynamics were used to calculate three dimensional knee joint moments, with repeated measures ANOVA and post hoc paired Student's t-test used to determine significance between shoe conditions. Significant differences were found in the extension moments of the knee for running trials, and for external rotation and adduction moments in the v-cutting trials. Knee moments were greater in v-cut than running, and the traditional soccer cleats (Copa Mondial and World Cup) tended to result in greater knee moments than the Nova runner or TRX soccer cleat. Cleat design was found to influence 3-dimensional knee moments in a v-cut maneuver. In the translational traction test, there were significant differences between all conditions. In the rotational traction test, friction with soccer shoes were greater than friction with running shoes. However, no differences were found between soccer shoes. Higher moments may lead to increased loads and stresses on knee joint structures, and thus, greater injury rates.

Analysis for foundation moments in space frame-shear wall-nonlinear soil system

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1369-1389
    • /
    • 2016
  • The soil-structure interaction effect significantly influences the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic loads. In the present work, the nonlinear soil-structure analysis of a G+5 storey RC shear wall building frame having isolated column footings and founded on deformable soil is presented. The nonlinear seismic FE analysis is carried out using ANSYS software for the building with and without shear walls to investigate the effect of inclusion of shear wall on the moments in the footings due to differential settlement of soil mass. The frame is considered to behave in linear elastic manner, whereas, soil mass to behave in nonlinear manner. It is found that the interaction effect causes significant variation in the moments in the footings. The comparison of non-interaction and interaction analyses suggests that the presence of shear wall causes significant decrease in bending moments in most of the footings but the interaction effect causes restoration of the bending moments to a great extent. A comparison is made between linear and nonlinear analyses to draw some important conclusions.

Optimization for trapezoidal combined footings: Optimal design

  • Arnulfo Lueanos-Rojas
    • Advances in concrete construction
    • /
    • 제16권1호
    • /
    • pp.21-34
    • /
    • 2023
  • This work presents a complete optimal model for trapezoidal combined footings that support a concentric load and moments around of the "X" and "Y" axes in each column to obtain the minimum area and the minimum cost. The model presented in this article considers a pressure diagram that has a linear variation (real pressure) and the equations are not limited to some cases. The classic model takes into account a concentric load and the moment around of the "X" axis (transverse axis) that is applied due to each column, i.e., the resultant force is located at the geometric center of the footing on the "Y" axis (longitudinal axis), and when the concentric load and moments around of the "X" and "Y" axes act on the footing is considered the uniform pressure applied on the contact surface of the footing, and it is the maximum pressure. Four numerical problems are presented to find the optimal design of a trapezoidal combined footing under a concentric load and moments around of the "X" and "Y" axes due to the columns: Case 1 not limited in the direction of the Y axis; Case 2 limited in the direction of the Y axis in column 1; Case 3 limited in the direction of the Y axis in column 2; Case 4 limited in the direction of the Y axis in columns 1 an 2. The complete optimal design in terms of cost optimization for the trapezoidal combined footings can be used for the rectangular combined footings considering the uniform width of the footing in the transversal direction, and also for different reinforced concrete design codes, simply by modifying the resisting capacity equations for moment, for bending shear, and for the punching shear, according to each of the codes.

ROBUST RELIABILITY DESIGN OF VEHICLE COMPONENTS WITH ARBITRARY DISTRIBUTION PARAMETERS

  • Zhang, Y.;He, X.;Liu, Q.;Wen, B.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.859-866
    • /
    • 2006
  • This study employed the perturbation method, the Edgeworth series, the reliability optimization, the reliability sensitivity technique and the robust design to present a practical and effective approach for the robust reliability design of vehicle components with arbitrary distribution parameters on the condition of known first four moments of original random variables. The theoretical formulae of the robust reliability design for vehicle components with arbitrary distribution parameters are obtained. The reliability sensitivity is added to the reliability optimization design model and the robust reliability design is described as a multi-objection optimization. On the condition of known first four moments of original random variables, the respective program can be used to obtain the robust reliability design parameters of vehicle components with arbitrary distribution parameters accurately and quickly.