• Title/Summary/Keyword: Design load

Search Result 9,301, Processing Time 0.033 seconds

The Comparison of the Stability of a Container Crane according to various Wind Load Design Codes (풍하중 설계 기준에 따른 컨테이너 크레인의 안정성 비교)

  • Lee Seong-Wook;Shim Jae-Joon;Han Dong-Seop;Han Geun-Jo;Kim Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.561-566
    • /
    • 2005
  • This study was carried out to amlyze and compare the stability of a 50ton container crane according to various wind load design codes. The wind load was evaluated according to 'The Specification of Port Facilities and Equipments / Specification for the design of crane structures (KS A 1627)' and 'Load Criteria of Building Structures' effected by the ministry of construction & transportation And the uplift forces qf a container crane under this wind load were estimated by amlyzing reaction forces at each supporting point and compared each other. From this study, we noticed that the design wind velocity criteria need to be defined specifically when the wind load is evaluated to design a container crane. And we verified the necessity of the estimation of the uplift forces at each supporting point to analyze a structural stability of a container crane and the maximum compressive force in order to consider the stability of the ground foundation of the berth.

Assessment of Design Criteria for Bearing Capacity of Rock Socketed Drilled Shaft (암반에 근입된 현장타설말뚝의 지지력 산정기준에 대한 평가)

  • 백규호;사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.95-105
    • /
    • 2003
  • The existing design criteria f3r the estimation of ultimate bearing capacity of drilled shaft socketed into rock masses are mainly obtained from the ultimate pile load capacities, which are determined by inconsistent failure criteria. Therefore, these design criteria generally produce difffrent predictions even for drilled shaft in the same condition. In this paper, the accuracies of the existing design criteria are investigated to develop an optimized design process for drilled shaft socketed into rock masses. Reasonable and consistent ultimate capacities of drilled shafts socked into rock masses, necessary far the check of accuracies of predictions, are determined by applying a specific failure criterion to a total of 11 pile load test results. A comparison between the predicted and the measured load capacities shows that ultimate base load capacities calculated from Zhang and Einstein's equation and NAVFAC are close to the measured values. Rosenberg and Journeaux's equation produces satisfactory prediction f3r ultimate side load capacity.

Implementation of Zero-Ripple Line Current Induction Cooker using Class-D Current-Source Resonant Inverter with Parallel-Load Network Parameters under Large-Signal Excitation

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1251-1264
    • /
    • 2018
  • The systematic and effective design method of a Class-D current-source resonant inverter for use in an induction cooker with zero-ripple line current is presented. The design procedure is based on the principle of the Class-D current-source resonant inverter with a simplified load network model that is a parallel equivalent circuit. An induction load characterization is obtained from a large-signal excitation test-bench based on parallel load network, which is the key to an accurate design for the induction cooker system. Accordingly, the proposed scheme provides a systematic, precise, and feasible solution than the existing design method based on series-parallel load network under low-signal excitation. Moreover, a zero-ripple condition of utility-line input current is naturally preserved without any extra circuit or control. Meanwhile, a differential-mode input electromagnetic interference (EMI) filter can be eliminated, high power quality in utility-line can be obtained, and a standard-recovery diode of bridge-rectifier can be employed. The step-by-step design procedure explained with design example. The devices stress and power loss analysis of induction cooker with a parallel load network under large-signal excitation are described. A 2,500-W laboratory prototype was developed for $220-V_{rms}/50-Hz$ utility-line to verify the theoretical analysis. An efficiency of the prototype is 96% at full load.

Reliability and code level

  • Kasperski, Michael;Geurts, Chris
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.295-307
    • /
    • 2005
  • The paper describes the work of the IAWE Working Group WBG - Reliability and Code Level, one of the International Codification Working Groups set up at ICWE10 in Copenhagen. The following topics are covered: sources of uncertainties in the design wind load, appropriate design target values for the exceedance probability of the design wind load for different structural classes with different consequences of a failure, yearly exceedance probability of the design wind speed and specification of the design aerodynamic coefficient for different design purposes. The recommendations from the working group are summarized at the end of the paper.

Equivalent static wind load estimation in wind-resistant design of single-layer reticulated shells

  • Li, Yuan-Qi;Tamura, Yukio
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.443-454
    • /
    • 2005
  • Wind loading is very important, even dominant in some cases, to large-span single-layer reticulated shells. At present, usually equivalent static methods based on quasi-steady assumption, as the same as the wind-resistant design of low-rise buildings, are used in the structural design. However, it is not easy to estimate a suitable equivalent static wind load so that the effects of fluctuating component of wind on the structural behaviors, especially on structural stability, can be well considered. In this paper, the effects of fluctuating component of wind load on the stability of a single-layer reticulated spherical shell model are investigated based on wind pressure distribution measured simultaneously in the wind tunnel. Several methods used to estimate the equivalent static wind load distribution for equivalent static wind-resistant design are reviewed. A new simple method from the stability point of view is presented to estimate the most unfavorable wind load distribution considering the effects of fluctuating component on the stability of shells. Finally, with comparisive analyses using different methods, the efficiency of the presented method for wind-resistant analysis of single-layer reticulated shells is established.

Point load actuation on plate structures based on triangular piezoelectric patches

  • Tondreau, Gilles;Raman, Sudharsana Raamanujan;Deraemaeker, Arnaud
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.547-565
    • /
    • 2014
  • This paper investigates the design of a perfect point load actuator based on flat triangular piezoelectric patches. Applying a difference of electric potential between the electrodes of a triangular patch leads to point loads at the tips and distributed moments along the edges of the electrodes. The previously derived analytical expressions of these forces show that they depend on two factors: the width over height (b/l) ratio of the triangle, and the ratio of the in-plane piezoelectric properties ($e_{31}/e_{32}$) of the active layer of the piezoelectric patch. In this paper, it is shown that by a proper choice of b/l and of the piezoelectric properties, the moments can be cancelled, so that if one side of the triangle is clamped, a perfect point load actuation can be achieved. This requires $e_{31}/e_{32}$ to be negative, which imposes the use of interdigitated electrodes instead of continuous ones. The design of two transducers with interdigitated electrodes for perfect point load actuation on a clamped plate is verified with finite element calculations. The first design is based on a full piezoelectric ceramic patch and shows superior actuation performance than the second design based on a piezocomposite patch with a volume fraction of fibres of 86%. The results show that both designs lead to perfect point load actuation while the use of an isotropic PZT patch with continuous electrodes gives significantly different results.

Generation & Application of Nonlinear Wave Loads for Structural Design of Very Large Containerships (초대형 컨테이너선 구조 설계를 위한 비선형 파랑하중 생성 및 적용)

  • Jung Byoung Hoon;Ryu Hong Ryeul;Choi Byung Ki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.15-21
    • /
    • 2005
  • In this paper, the procedure of generation and application of nonlinear wave loads for structural design of large container carrier was described. Ship motion and wave load was calculated by modified strip method. Pressure acting on wetted hull surface was calculated taking into account of relative hull motion to the wave. Design wave height was determined based on the most sensitive wave length considering rule vertical wave bending moment at head sea or fellowing sea condition. And the enforced heeling angie concept which was introduced by Germanischer Lloyd (GL) classification had been used to simulate high torsional moment in way of fore hold parts similar to actual sea going condition. Using wave load generated from this dynamic load calculation, FE analyses were performed. With this result, yielding, buckling, hatch diagonal deflection and fatigue strength of hatch corners were reviewed based on the requirement of GL classification. The results of FE analysis show good compatibility with GL classification.

  • PDF

A Study on Prediction of Power Consumption Rate for Heating and Cooling load of School Building in Changwon City (창원시 학교 건축물의 냉난방부하에 대한 전력 소비량 추정에 관한 연구)

  • Park, Hyo-Seok;Choi, Jeong-Min;Cho, Sung-Woo
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.11 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • This study was carried out in order to establish the estimation equation for school power consumption using regression analysis based on collected power consumption for two years of weather data and schools are located in Central Changwon and Masan district in Changwon city. (1) The power consumption estimation equation for Heating and cooling is calculated using power consumption per unit volume, the difference between actual power consumption and results of estimation equations is 4.1%. (2) The power consumption estimation equation for heating load is showed 2.6% difference compared to actual power consumption in Central Changwon and is expressed 2.9% difference compared to that in Masan district. Therefore, the power consumption prediction for each school using the power consumption estimation equation is possible. (3) The power consumption estimation equation for cooling load is showed 8.0% difference compared to actual power consumption in Central Changwon and is expressed 2.9% compared to that in Masan district. As the power consumption estimation equation for cooling load is expressed difference compared to heating load, it needs to investigate influence for cooling load.

Load Characteristics of Engine Main Bearing : Comparison Between Theory and Experiment

  • Cho, Myung-Rae;Oh, Dae-Yoon;Ryu, Seung-Hyuk;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1095-1101
    • /
    • 2002
  • The load characteristics of engine main bearing are very important in the design of crankshaft and engine block. The stiffness of crankshaft and block, or the optimal dimension of the bearing can be determined according to the load level. This paper presents the load characteristics of engine main bearing. Two components of the main bearing load are measured during engine firing and motoring. The vertical and horizontal load components are measured by using the dynamic load cell mounted in each main bearing cap bolt. The measured main bearing loads are compared with calculated results by using the statically determinate method. The theoretical results, provided in this study, agreed well with the experimental results. The presented results are very useful for achieving optimal design of engine.

Two-dimensional Chip-load Analysis for Automatic Feedrate Adjustment (이송률 자동조정을 위한 2차원 칩로드 해석)

  • 배석형;고기훈;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.155-167
    • /
    • 2000
  • To be presented is two-dimensional chip-load analysis for cutting-load smoothing which is needed in unmanned machining and high speed machining of sculptured surfaces. Cutter-engagement angle and effective cutting depth are defined as chip-loads which are the geometrical measures corresponding to cutting-load while machining. The extreme values of chip-loads are geometrically derived in the line-line and line-arc-line blocks of the two-dimensional NC-codes. AFA(automatic feedrate adjustment) strategy for cutting-load smoothing is presented based on the chip-load trajectories.

  • PDF