• Title/Summary/Keyword: Design fractile

Search Result 12, Processing Time 0.026 seconds

Current Issues in Wind Engineering: A Review

  • Yong Chul Kim
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.287-297
    • /
    • 2023
  • This paper briefly discusses current issues in wind engineering, including the enhancement of aerodynamic database and AI-assisted design, aerodynamic characteristics of tall buildings with atypical building shapes, application of computation fluid dynamics to wind engineering, evaluation of aerodynamic force coefficients based on a probabilistic method, estimation of tornadic wind speed (JEF scale) and effect of the Ekman Spiral on tall buildings.

Simplified Design Equation of Lap Splice Length in Compression

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • With the emergence of ultra-high strength of concrete, the compression lap splice has become an important area of interest. According to ACI 318-08, a compression splice can be longer than a tension splice when high-strength concrete is used. By reevaluating the test results of compression splices and performing regression analysis, a simplified design equation for splice length in compression was developed based on the basic form of design equations for development/splice lengths of deformed bars and hooks in tension. A simple linear relation between $l_s/d_b$ and $f_{sc}\sqrt{f'_c}$ was assumed, and yields good values for the correlation coefficient and the mean and the COV (coefficient of variation) of the ratios of tests to predictions of splice strengths in compression. By including the 5% fractile coefficient of 0.83, a design equation for splice length in compression was developed. The splice length calculated using the proposed equation has a reliability that is equivalent to other provisions for reinforcing bars.

A Study on the Automation Algorithm to Identify the Geological Lineament using Spatial Statistical Analysis (공간통계분석을 이용한 지질구조선 자동화 알고리즘 연구)

  • Kwon, O-Il;Kim, Woo-Seok;Kim, Jin-Hwan;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.367-376
    • /
    • 2017
  • Recently, tunneling under the seabed is becoming increasingly common in many countries. In Korea, there are proposals to tunnel from the mainland to Jeju Island. Safe construction requires geologic structures such as faults to be characterized during the design and construction phase; however, unlike on land, such structures are difficult to survey seabed. This study aims to develop an algorithm that uses geostatistics to automatically derive large-scale geological structures on the seabed. The most important considerations in this method are the optimal size of the moving window, the optimal type of spatial statistics, and determination of the optimal percentile standard. Finally, the optimal analysis algorithm was developed using the R program, which comprehensibly presents variations in spatial statistics. The program allows the type and percentile standard of spatial statistics to be specified by the user, thus enabling an analysis of the geological structure according to variations in spatial statistics. The geotechnical defense-training algorithm shows that a large, linear geological lineament is best visualized using a $3{\times}3$ moving window and a 10% upper standard based on the moving variance value and fractile. In particular, setting the fractile criterion to the upper 0.5% almost entirely eliminates the error values from the contour image.

Nonlinear probabilistic shear panel analysis using advanced sampling techniques

  • Strauss, Alfred;Ju, Hyunjin;Belletti, Beatrice;Ramstorfer, Maximilian;Cosma, Mattia Pancrazio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.179-193
    • /
    • 2022
  • The shear behaviour of reinforced concrete members has been studied over the past decades by various researchers, and it can be simulated by analysing shear panel elements which has been regarded as a basic element of reinforced concrete members subjected to in-plane biaxial stresses. Despite various experimental studies on shear panel element which have been conducted so far, there are still a lot of uncertainties related to what influencing factors govern the shear behaviour and affect failure mechanism in reinforced concrete members. To identify the uncertainties, a finite element analysis can be used, which enables to investigate the impact of specific variables such as the reinforcement ratio, the shear retention factor, and the material characteristics including aggregate interlock, tension stiffening, compressive softening, and shear behaviour at the crack surface. In this study, a non-linear probabilistic analysis was conducted on reinforced concrete panels using a finite element method optimized for reinforced concrete members and advanced sampling techniques so that probabilistic analysis can be performed effectively. Consequently, this study figures out what analysis methodology and input parameters have the most influence on shear behaviour of reinforced concrete panels.

Comparison of Development Length Equation of Bottom and Top GFRP Bars with Splitting Failure (쪼갬파괴된 GFRP 하부근과 상부근의 정착길이 산정식 비교)

  • Ha, Sang-Su;Yoon, Joon-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.141-149
    • /
    • 2009
  • The objective of this study was to propose a development length equation for bottom and top GFRP bars. Including the bottom and top GRPP bars, a total of 104 modified pullout tests were completed. The test variables were embedment length (15, 30, 45db), net cover thickness (0.5~2.0db), different GFRP bar types, and bar diameters (10, 13, 16mm). The average bond stresses were determined based on the modified pullout test results. Two variable linear regression analyses were performed on the results of the average bond stresses. Utilizing the 5% fractile concept, a conservative development length design equation was derived. The design equation of the development length for bottom and top GFRP bars was proposed and the design equation derived in this study was compared to the ACI 440.1R-06 committee equation.

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members (RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안)

  • Choi, Dong-Uk;Chun, Sung-Chul;Ha, Sang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

Development and Splice Lengths of FRP Bars with Splitting Failures (쪼갬파괴에 의한 FRP 보강근의 정착길이와 이음길이)

  • Chun, Sung-Chul;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.519-525
    • /
    • 2010
  • Data from beam-based bond tests for FRP bars in the literature were collected and regression analyses were conducted for the data of splitting failure. Average bond strengths obtained from splice tests were found to be lower and more affected by C/$d_b$ values than average bond strengths from anchorage tests, indicating needs of new design equation for the splice length of FRP bars based on the data of splice tests only. In addition, the variation of bond strengths was greater than that of tensile strengths of FRP bars and, therefore, a new safety factor should be involved for the design equation. Five percent fractile coefficients were used to develop the design equations based on the assumption that load and resistance factors for FRP reinforced concrete structures are same to the factors for steel reinforced concrete structures. The proposed design equations give economical and reliable lengths for development and splice of FRP bars. The proposed equation for splice provides shorter lengths than the ACI 440 equation in case of C/$d_b$ of 3.0 or greater. Because FRP bars are expected to be used in slabs and walls exposed to weather with thick cover and large spacing between bars, the proposed equation gives optimal splice lengths.

Compression Lap Splice Length in Concrete of Compressive Strength from 40 to 70 MPa (40-70 MPa 콘크리트에서의 철근 압축이음 길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.401-408
    • /
    • 2009
  • A compression lap splice becomes an important issue due to development of ultra-high strength concrete. Current design codes regarding compression lap splice do not utilize merits of the improved strength of ultra-high strength concrete. Especially, a compression lap splice can be calculated longer than a tension lap splice according to the codes because they do not consider effects of compressive strength of concrete and transverse reinforcement. This anomaly confuses engineers in practice. Design equation is proposed for compression lap splice in 40 to 70 MPa of compressive strength of concrete. The proposed equation is based on 51 specimens conducted by authors. Basic form of the equation includes main parameters which are derived from investigating test results. Through two-variable non-linear regression analysis of measured splice strengths, a strength equation of compression lap splices is then derived. A specified splice strength is defined using a 5% fractile coefficient and a lap length equation is constructed. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Development Length of GFRP Bars (GFRP 보강근의 정착길이 설계식 제안)

  • Ha, Sang-Su;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.131-141
    • /
    • 2010
  • The objective of this study was to propose a development length equation for GFRP bars. A total of 104 modified pullout tests were completed while the test variables were embedment length (15, 30, $45d_b$), net cover thickness ($0.5{\sim}2.0d_b$), top-cast bar effect, different GFRP bar types (K2KR, K3KR and AsUS), and bar diameters (10, 13, 16 mm). Average bond stresses were determined based on modified pullout test results. Two variable linear regression analysis was performed of the average bond stresses. Utilizing 5% fractile concept, a conservative development length design equation was derived. The design equation derived in this study was compared to the ACI 440 committee equation. The cross-comparison revealed that the current equation resulted in shorter development lengths than those determined by the ACI 440 equation when the net cover thickness was large (greater than $1.0d_b$). On the other hand, when the net cover thickness was small (equal to or less than $1.0d_b$), the development lengths required by the current equation were larger than those by the ACI equation. The bond stresses were significantly influenced by the cover thicknesses. The current equation results in development lengths that are more economical when the cover thickness is large, and more conservative lengths when the cover thickness is small than the ACI 440 committee equation.

Pullout Tests on M12&M20 Stainless Steel Post-Installed Expansion Anchor for Seismic Design in Cracked Concrete (균열 콘크리트에 설치된 M12, M20 내진용 스테인리스스틸 확장식 후설치 앵커 인장 실험)

  • Kim, Jin-Gyu;Chun, Sung-Chul;An, Yeong-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, seismic design for anchors is required, which are used for connecting structural members and non-structural and structural members. In this study, pull-out tests on the new expansion anchors which have been developed for cracked concrete. The anchors of 12 mm and 20 mm diameters were tested which are commonly used. Experiments were conducted on non-cracked concrete and cracked concrete to evaluate the seismic performance of the post-installed anchor. The experimental method complies with the specified test protocol (KCI, 2018). Three experimental variables are included in this study: presence of cracks, concrete compressive strength, and effective embedment depth. The strength of the anchors was evaluated with the characteristic capacity K5% determined from the test results incorporated with the safety of 5% fractile. The characteristic capacity K5% of the non-cracked and cracked concrete specified in KDS 14 20 54 are 9.8 and 7.0, respectively. Test results show that all groups except the three groups have higher characteristic capacity K5% than the KDS code and the nominal strengths of the tested anchors can be determined with the obtained characteristic capacity K5%.