• Title/Summary/Keyword: Design for test

Search Result 18,073, Processing Time 0.055 seconds

The design of C-GIS and the analysis of its Performance test results (C-GIS의 설계 및 성능평가 결과분석)

  • Shin, Y.J.;Kim, M.H.;Ryu, H.K.;Lee, Y.H.;Kim, C.H.;Kim, J.K.;Kim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.551-553
    • /
    • 2002
  • The cubicle type GIS rated at 25.8kV has been designed and manufactured by Jinkwang E&C eacently with their own technologies and KERI's assistances. The C-GIS has been tested to check the design capability for reference before conducting the type test. The operating characteristics test, short time withstand current and peak withstand current test, basic short circuit test duty T60 for preconditioning test, cable charging current switching test, capacitor bank current switching test, basic short circuit test duty T100s and T100a, single phase earth fault test, double earth fault test has been conducted. The test results show that the design and the manufacturing of the C-GIS has an enough capability to pass through the type test except the occurrence of 2 NSDDs in the cable charging current switching test and the instability of opening time at the minimum operating voltage. The problems shown in the tests will be improved soon and the successful pass will be expected in the following type test.

  • PDF

Design of an Automatic Test System for Electronic Equipments in Vehicles (승용차용 전장시험 자동화 시스템 설계)

  • 이창훈;김유남
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.131-138
    • /
    • 2001
  • The performance analysis of an electronic equipment test is very complicate due to the variety o vehicles. In this study, automatic design system for the electronic equipment test has been carried out using the standard load patterns. For the test, standard signal patterns for each item are modeled. The test items can be decided by the user by means of these patterns. Also, engineering software modules are developed and proved to be very efficient for analyzing the test results statistically. Experiments are performed for the test system in the vehicle assembly line. By analyzing the test results, it is found that bad samples can be detected without failure. Also, the engineering software modules provide an analytical tool for the automation of the test process.

  • PDF

Analysis and Test for Pantograph of High Speed Rolling Stock HSR 350x (고속전철용 판토그라프 설계 및 시험평가)

  • 박수홍;정경렬;김휘준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.160-169
    • /
    • 2003
  • Pantograph of high speed rolling stock is one of the key components that transfer of associated technologies was blocked fundamentally from advanced nations. In this study, main technologies related to development of prototype pantograph installed on prototype test train developed according to the project "Development of high speed railway technology" are presented. Status of current korean technologies is explained by presenting developed technologies and applications during the past 6 years from concept design to test and evaluation.

  • PDF

A Study on Safety Design of Auxiliary tank in a high-pressure air compressor (고압공기압축기의 보조탱크 안전설계에 관한 연구)

  • 강동명;오진수;이장규;우창기
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.31-36
    • /
    • 1997
  • Strength test using strain rosette gage have been conducted to investigate safety of an auxiliary tank in a high-pressure air compressor. Thickness of auxiliary tanks in 6063-T5 aluminum at toy are 9mm and 17mm. The result of strength test make a comparison the design in strength of materials by nominal stress and the design in fracture mechanics with consideration of crack size. Summarizing the result: Comparing with the safe working pressure of the strength test and that of the design method in strength of materials by nominal stress with the experimental values, it makes difference 11% and 39% for 9mm and 17mm thickness of auxiliary tanks, respectively, and that of the design method by fracture mechanics, it makes difference 4% and 5% for them, respectively. It is confirmed that the design by fracture mechanics is more economical and safe design than the design in strength of materials by nominal stress.

  • PDF

A Study on Shock Test Design Method Using Linear Dynamic Model of Light Weight Vertical Shock Test Machine (경중량 수직형 충격 시험 장비의 선형 동역학 모델 수립을 통한 충격 시험 설계 기법에 관한 연구)

  • Kim, Junhyeok;Oh, Boo-Jin;Im, Damhyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Naval surface ships and submarines could be exposed to non-contact underwater explosion(UNDEX) environment. Equipment installed on the ships and submarines could be damaged by shock load generated by UNDEX environment. Therefore, shock survivability of equipment generally evaluated by shock tests. Ground based shock test machine such as Light weight shock test machine(LVSM) is developed to simulate shock load caused by UNDEX environment. In this study, linear dynamic model of LVSM is proposed and evaluated to improve shock test design procedure. Parameters of the model are decided by optimizing time domain response compared to zero payload experiment. Proposed model is verified by comparing simulation results and test results of maximum payload experiment. Finally, shock test design using the model is described for various test equipment weight.

A Study on the Preliminary Design of Gas Turbine Combustor (가스터빈 연소기 기본형상 결정에 관한 연구)

  • Ahn, Kook-Young;Kim, Han-Suck;Kim, Kwan-Tae;Bae, Jin-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.135-151
    • /
    • 1997
  • The preliminary design and performance test for determining dimensions of gas turbine combustor were investigated. The combustor design program was developed and applied to design our combustor. and detailed design for determining of swirler. dome and liner holes were performed experimentally. The swirler. which govern the combustion characteristics of combustor, was determined $40^{\circ}$ as swirl angle at first performance test. After second performance test the swirler was re-determined by 24 mm i.d.. 34 mm o.d., and swirl angle of $45^{\circ}$. The geometry of liner holes were determined by considering the flame stability and recirculation zone size. It was found that flame can be more easily stabilized by adjusting the swirier dimensions rather than liner holes. The geometry of swirler and liner holes were re-determined by final performance test with dilution holes. Also. the performance of combustor was evaluated by analysis of exhaust gases.

  • PDF

Design of Accelerated Test for Reliability Assurance of SHAFT Assembly (SHAFT 어셈블리 신뢰성 보증을 위한 가속시험의 설계)

  • 김준홍;오근태;김명수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.75-87
    • /
    • 2000
  • This paper proposes a procedure for designing an accelerated test using SMAT(Stress, (failure) Mechanism and Test) model describing the relation among stress, failure mode/mechanism and test method. In SMAT model the stresses to be applied are derived from the environmental factor analysis, the relative importance of those stresses can be estimated using AHP(Analytic Hierarchy Process) and failure mode/mechanism and test method are derived from the fields failure information and FMEA(Failure Mode and Effect Analysis). By applying the procedure we can make a selection of major factors to cause the failure of assembly and design the accelerated test using DOE(Design of Experiments) The procedure is illustrated with an qualification test case study of washing machine shaft assembly in "A" electric appliance company.

  • PDF

DETERMINATION OF RUPTURE TIME AND STRAIN RATE IN CREEP BY UNIAXIAL TENSILE TEST

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.74-79
    • /
    • 1994
  • The log-log presentation of stress versus Larson-Miller parameter is obtained by uniaxial tensile test instead of the long time creep test. The used material for example calculations is SUS304 stainless steel. The temperature of the uniaxial tensile test can be determined by the Larson-Miller parameter of the design stress and the 0.1hr's rupture time of the uniaxial tensile test. The rupture time at the design temperature and stress can be determined by the Larson-Miller parameter of the stress. The average creep rate is the total deformation of the tensile test divided by the rupture time at the design stress and temperature. The liner trend and the order of the data of the average creep rate by this method is almost same as that of experimental results.

  • PDF

Design of a Steel Bar Breaking System in a Sled Test Facility (Sled Test용 Steel Bar Breaking System의 설계)

  • Cho, In-Yong;Lee, Hyung-Joo;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.770-775
    • /
    • 2001
  • Steel bar breaking system is a component of a sled test system for automobile crashworthiness. It is a recent idea for the sled test. In a sled test, a crash pulse is given as a input made from a real test. The steel bar breaking system is designed to generate a certain crash pulse. Orthogonal arrays from design of experiments (DOE) are employed. The factors of the array are panel thickness and the number of steel bars, and the levels are candidate values of them. A simulation is utilized for the crash analysis. A commercial system called LS/DYNA3D is adopted. A test system is designed based on the results.

  • PDF

Multi-body Dynamics and Structural Vibration Analyses of Smart UAV Ground Test Equipment (스마트 무인기 지상시험장치의 다물체 동역학 및 구조진동해석)

  • Park, Kang-Kyun;Kim, Dong-Hyun;Kim, Dong-Man;Choi, Hyun-Chul;Ahn, Oh-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • In this study, computational multi-body dynamics and structural vibration analyses including some impact condition have been conducted for the ground flight test system of the developed smart UAV model. Designed ground test system has four degree-of-freedom motions with limited motion control mechanism. Design safety margin designs for several structural components are tested and verified considering expected critical motions (pitching and rolling) of the test smart UAV model. Computational results for various analysis conditions are practically presented in detail. Futhermore, proper design modifications of the initially designed test equipment in order to guarantee or increase structural safety have been successfully conducted in the design stage.