• Title/Summary/Keyword: Design flowrate

Search Result 159, Processing Time 0.024 seconds

Flow Analyses in a Cross-Flow Fan (횡류팬 내부의 유동해석)

  • Lee H G.;Park H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.65-70
    • /
    • 2002
  • Cross-Flow Fan(CFF) are widely used lot industrial equipments and household electric appliances. A design method for CFFs, however, has not been well established because of the complexity of the internal flow. Numerical analysis was performed by using STAR-CD. In this study present the internal flow of CFF, which has varies pin number, and their flowrate were compared

  • PDF

A Study on the Development of Computer Software for the Design of Fire Protection System (방화설비계통 설계용 전산소프트웨어 개발에 관한 연구)

  • 이정혜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.275-284
    • /
    • 1998
  • Standard on the carbon dioxide extinguishing system was prepared by the committed of the national fire protection assocition(NFPA)in USA on 1980. And this code is also applied to the design of a marine fire extinguishing system The most important problem in design is the uniform discharge of $CO_2$ through each nozzle from the high pressure $CO_2$ storage facility. The purpose of this paper is to develop the computer software to design the marine fire protection piping system. By solving the continuity equation energy equation and Bernoulli's equation simulataneously the flowrate in branch pipelines and discharge nozzles can be calculated.

  • PDF

The Variations of Performance Parameters for Small Scale Hydro Power Plant with Rainfall Condition (강우상태에 의한 소수력발전소 성능변수의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • The effects of design parameters for small scale hydro power (SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

Design Criterion for the Size of Micro-scale Pt-catalytic Combustor in Respect of Heat Release Rate (열 방출률에 대한 마이크로 백금 촉매 연소기의 치수 설계 기준)

  • Lee, Gwang Goo;Suzuki, Yuji
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • Design criterion for the size of micro Pt-catalytic combustor is investigated in terms of heat release rate. One-dimensional plug flow model is applied to determine the surface reaction constants using the experimental data at stoichiometric butane-air mixture. With these reaction constants, the mass fraction of butane and heat release rate predicted by the plug flow model are in good agreement with the experimental data at the combustor exit. The relationship between the size of micro catalytic combustor and mixture flowrate is introduced in the form of product of two terms-the effect of fuel conversion efficiency, and the effect of chemical reaction rate and mass transfer rate.

A Study on the Performance Prediction Methodology of Small Hydropower Plant (소수력발전소의 성능예측 기법에 관한 연구)

  • Park, Wan-Soon;Lee, Chul-Hyung;Jeong, Sang-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.894-898
    • /
    • 2006
  • A model, which can analyze the hydrological performance for small hydropower(SHP) plants having no flow duration characteristics has been studied and developed. System performance of existing SHP plant under operating was analyzed by using the developed model. The annual operational rate of SHP plant showed that the data were in good agreement with predicted results from the model. Based on these results, several SHP sites to be exploited were selected and the performance characteristics were analyzed by using the developed model. Also, primary design values such as design flow rate, plant capacity, and operational rate were suggested. As a result, it was found that the methodology used in this study is useful tool to predict the hydrological system performances of SHP sites.

  • PDF

A Study on Development of a Circulating Pump with Space Constraintst (설치공간이 제한된 순환펌프의 개발에 관한 연구)

  • Yoon, Eui-Soo;Yoo, Il-Su;Hwang, Soon-Chan;Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.24-33
    • /
    • 2011
  • A circulating pump with installation space constraints was developed satisfying performance requirements such as flowrate, head and NPSHAv. The development procedures are composed of conceptual design, configuration design, performance analysis by CFD and performance test which were established in KIMM. The developed pump is OH4 type centrifugal pump which has a mixed-flow type impeller, a double volute and a rigid coupling. As a result of tests, the pump proved to meet all the requirements including space constraints and performance.

A Study on the Performance Prediction Methodology of Small Hydropower Plant (소수력발전소의 성능예측기법에 관한 연구)

  • Lee, C.H.;Park, W.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.742-747
    • /
    • 2005
  • A model, which can analyze the hydrological performance for small hydropower(SHP) plants having no flow duration characteristics has been studied and developed. System performance of existing SHP plant under operating was analyzed by using the developed model. The annual operational rate of SHP plant showed that the data were in good agreement with predicted results from the model. Based on these results, several SHP sites to be exploited were selected and the performance characteristics were analyzed by using the developed model. Also, primary design values such as design flow rate, plant capacity, and operational rate were suggested. As a result, it was found that the methodology used in this study is useful tool to predict the hydrological system performances of SHP sites.

  • PDF

Design and Evaluation of the Model Based Controller for a U-tube Steam Generator Level

  • Kim, Keung-Koo;Lee, Doojeong;John E. Meyer;David D. Lanning;John A. Bernard
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.15-24
    • /
    • 1997
  • The design and evaluation of a digital U-tube steam generator level controller of nuclear power plants, which uses model-based compensators to offset the inverse response behavior of water level, is described. Included is a review of steam generator level dynamics, a simulation model that replicates the effects of feedwater and steam flowrate as well as temperature on steam generator level, the design of both the compensators and the overall controller, and the results of simulation studies in which the performances of this model-based controller and existing analog ones were compared. The proposed digital steam generator level controller is stable and its use significantly improves the controllability of steam generator level.

  • PDF

Automated Wafer Separation from the Stacked Array of Solar Cell Silicon Wafers Using Continuous Water Jet

  • Kim, Kyoung-Jin;Kim, Dong-Joo;Kwak, Ho-Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • In response to the industrial needs for automated handling of very thin solar cell wafers, this paper presents the design concept for the individual wafer separation from the stacked wafers by utilizing continuous water jet. The experimental apparatus for automated wafer separation was constructed and it includes the water jet system and the microprocessor controlled wafer stack advancing system. Through a series of tests, the performance of the proposed design is quantified into the success rate of single wafer separation and the rapidity of processing wafer stack. Also, the inclination angle of wafer equipped cartridge and the water jet flowrate are found to be important parameters to be considered for process optimization. The proposed design shows the concept for fast and efficient processing of wafer separation and can be implemented in the automated manufacturing of silicon based solar cell wafers.

Electrospun polyamide thin film composite forward osmosis membrane: Influencing factors affecting structural parameter

  • Ghadiri, Leila;Bozorg, Ali;Shakeri, Alireza
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.417-429
    • /
    • 2019
  • Poly Sulfone nanofibers were electrospun to fabricate membranes of different characteristics. To fabricate the fiber mats, polymer concentration, flowrate, and current density were determined as the most influencing factors affecting the overall performance of the membranes and studied through Response Surface Methodology. The Box-Behnken Design method (three factors at three levels) was used to design, analyze, and optimize the parameters to achieve the best possible performance of the electrospun membranes in forward osmosis process. Also, internal concentration polarization that characterizes the efficiency of the forward osmosis membranes was determined to better assess the overall performance of the fabricated electrospun membranes. Water flux to reverse salt flux was considered as the main response to assess the performance of the membranes. As confirmed experimentally, best membrane performance with the minimal structural parameter value could be achieved when predicted optimal values were used to fabricate the membranes through electrospinning process.