• Title/Summary/Keyword: Design curves

Search Result 1,259, Processing Time 0.031 seconds

Winkler Springs (p-y curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the Mobilized Strength Design concept

  • Bouzid, Dj. Amar;Bhattacharya, S.;Dash, S.R.
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.379-399
    • /
    • 2013
  • In practice, analysis of laterally loaded piles is carried out using beams on non-linear Winkler springs model (often known as p-y method) due to its simplicity, low computational cost and the ability to model layered soils. In this approach, soil-pile interaction along the depth is characterized by a set of discrete non-linear springs represented by p-y curves where p is the pressure on the soil that causes a relative deformation of y. p-y curves are usually constructed based on semi-empirical correlations. In order to construct API/DNV proposed p-y curve for clay, one needs two values from the monotonic stress-strain test results i.e., undrained strength ($s_u$) and the strain at 50% yield stress (${\varepsilon}_{50}$). This approach may ignore various features for a particular soil which may lead to un-conservative or over-conservative design as not all the data points in the stress-strain relation are used. However, with the increasing ability to simulate soil-structure interaction problems using highly developed computers, the trend has shifted towards a more theoretically sound basis. In this paper, principles of Mobilized Strength Design (MSD) concept is used to construct a continuous p-y curves from experimentally obtained stress-strain relationship of the soil. In the method, the stress-strain graph is scaled by two coefficient $N_C$ (for stress) and $M_C$ (for strain) to obtain the p-y curves. $M_C$ and $N_C$ are derived based on Semi-Analytical Finite Element approach exploiting the axial symmetry where a pile is modelled as a series of embedded discs. An example is considered to show the application of the methodology.

Assessment of collapse safety margin for DDBD and FBD-designed RC frame buildings

  • Alimohammadi, Dariush;Abadi, Esmaeel Izadi Zaman
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.229-244
    • /
    • 2022
  • This paper investigates the seismic performance of buildings designed using DDBD (Direct Displacement based Design) and FBD (Force based Design) approaches from the probabilistic viewpoint. It aims to estimate the collapse capacity of structures and assess the adequacy of seismic design codes. In this regard, (i) IDA (Incremental Dynamic Analysis) curves, (ii) interstory drift demand distribution curves, (iii) fragility curves, and (iv) the methodology provided by FEMA P-695 are applied to examine two groups of RC moment resistant frame buildings: 8-story structures with different plans, to study the effect of different span arrangements; and 3-, 7- and 12-story structures with a fixed plan, to study the dynamic behavior of the buildings. Structural modeling is performed in OpenSees software and validated using the results of an experimental model. It is concluded that increasing the building height would not significantly affect the response estimation of IDA and fragility curves of DDBD-designed structures, while the change in span arrangements is effective in estimating responses. In the investigation of the code adequacy, unlike the FBD approach, the DDBD can satisfy the performance criteria presented in FEMA P-695 and hence provide excellent performance.

Aerodynamic Design Program for Centrifugal/Mixed-flow Compressors - Part II : Three Dimensional Profile Design of Impellers - (원심/사류압축기의 공력설계 프로그램 개발 - 제2부 : 임펠러의 3차원 형상설계 -)

  • Oh, Jong-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.464-468
    • /
    • 2003
  • A general program of three dimensional profile design of impellers for centrifugal/fixed-flow compressors is successfully commercialized using Bezier curves and quasi-3D flow analysis methods. Control points for meridional hub and shroud contours and blade camberline angles are arbitrarily changed to give smooth Bezier curves. With specified blade normal thicknesses, contructed geometry is instantly analyzed using flow analysis methods to be checked.

  • PDF

A New Metric for A Class of 2-D Parametric Curves

  • Wee, Nam-Sook;Park, Joon-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.140-144
    • /
    • 1998
  • We propose the area between a pair of non-self-intersecting 2-D parametric curves with same endpoints as an alternative distance metric between the curves. This metric is used when d curve is approximated with another in a simpler form to evaluate how good the approximation is. The traditional set-theoretic Hausdorff distance can he defined for any pair of curves but requires expensive calculations. Our proposed metric is not only intuitively appealing but also very easy to numerically compute. We present the numerical schemes and test it on some examples to show that our proposed metric converges in a few steps within a high accuracy.

  • PDF

A Study on Stability for Traverse Cam of Twising Machine using Shape Design Method of Relative Velocity and Modified Displacement Curves (상대속도에 의한 형상설계법과 개선된 변위선도에 의한 연사기용 Traverse Cam의 안정성에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • s.31
    • /
    • pp.101-112
    • /
    • 2001
  • A Twisting machine is to twist yarns for improving yarn stiffness. After twisting yarns, the twisting machine is winding yarn at a bobbin. Traverse cam is main part of winding yarn part. In other to improve twisting machine performance and stability, improve traverse cam part. Original displacement curves of traverse cam has two problems. One is that displacement curve has a vertex point the other is that velocity curve is discontinue point. So that, in this paper proposes a modified displacement curves of traverse cam and new shape design method of the traverse cam using the relative velocity method[1]. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationship and the kinematical constraints. Finally, we present to compare two designed cam. One is designed using original displacement curves the other is using modified displacement curve.

  • PDF

The empirical corner stiffness for right-angle frames of rectangular and H-type cross-sections

  • Kwon, Young-Doo;Kwon, Soon-Bum;Gil, Hyuck-Moon;Cho, Hui-Jeong
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.471-485
    • /
    • 2014
  • Until now, the finite corner stiffness of the right-angle frames used as horizontal girders in a bonnet, have not been considered during the design process to result in not a precise result. This paper presents a design equation set for right-angle frames used as horizontal girders in a bonnet assuming rigid corner stiffness. By comparing the center stresses of the right-angle frame according to the design equation set with the results of the finite element method, the master curves for the empirical corner stiffness can be determined as a function of slenderness ratio. A second design equation set for a right-angle frame assuming finite corner stiffness was derived and compared with the first equation set. The master curves for the corner stiffness and the second design equation set can be used to determine the design moments at the centers of the girder so that the bending stresses can be analyzed more precisely.

P-y Curves from Large Displacement Borehole Testmeter for Railway Bridge Foundation (장변위공내재하시험기를 이용한 철도교 기초의 P-y곡선에 관한 연구)

  • Ryu, Chang-Youl;Lee, Seul;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.836-842
    • /
    • 2011
  • The lateral stability of bridge foundations against train moving load, emergency stopping load, earthquakes, and so on is very important for a railway bridge foundation. A borehole test is much more accurate than laboratory tests since it is possible to minimize the disturbance of ground conditions on the test site. The representative borehole test methods are Dilatometer, Pressuremeter and Lateral Load Tester, which usually provide force-resistance characteristics in elastic range. In order to estimate P-y curves using those methods, the non-linear characteristics of soil which is one of the most important characteristics of the soil cannot be obtained. Therefore, P-y curves are estimated usually using elastic modulus ($E_O$, $E_R$) of lateral pressure-deformation ratio obtained within the range of elastic behavior. Even though the pile foundation is designed using borehole tests in field to increase design accuracy, it is necessary to use a higher safety factor to improve the reliability of the design. A Large Displacement Borehole Testmeter(LDBT) is developed to measure nonlinear characteristics of the soil in this study. P-y curves can be directly achieved from the developed equipment. Comparisons between measured P-y curves the LDBT developed equipment, theoretical methods based on geotechnical investigations, and back-calculated P-y curves from field tests are shown in this paper. The research result shows that the measured P-y curves using LDBT can be properly matched with back-calculated P-y curves from filed tests by applying scale effects for sand and clay, respectively.

  • PDF

Equivalence Principles Based Skin Deformation of Character Animation

  • You, L.H.;Chaudhry, E.;You, X.Y.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • Based on the equivalence principles of physical properties, geometric properties and externally applied forces between a surface and the corresponding curves, we present a fast physics and example based skin deformation method for character animation in this paper. The main idea is to represent the skin surface and its deformations with a group of curves whose computation incurs much less computing overheads than the direct surface-based approach. The geometric and physical properties together with externally applied forces of the curves are determined from those of the surface defined by these curves according to the equivalence principles between the surface and the curves. This ensures the curve-based approach is equivalent to the original problem. A fourth order ordinary differential equation is introduced to describe the deformations of the curves between two example skin shapes which relates geometric and physical properties and externally applied forces to shape changes of the curves. The skin deformation is determined from these deformed curves. Several examples are given in this paper to demonstrate the application of the method.

Elastic Analysis of Ship Bottom Structure Using Orthotropic Plate Theory (직교이방성평판이론(直交異方性平板理論)을 이용(利用)한 선저구조(船底構造)의 탄성해석(彈性解析))

  • C.Y.,Kim;S.K.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 1982
  • Ship bottom structure is idealized by an equivalent orthotropic plate upon which uniform lateral, uni-axial and bi-axial loads act. Solutions in the form of series representing deflections and moments at the center are obtained in case of simply supported and fixed boundary conditions. Variables in the solutions are reduced and grouped in nondimensional parameters. Stresses in the members of actual plate-stiffener combination are calculated corresponding to moments obtained above. In this paper design curves of deflections and moments for two different sets of boundary conditions are given, and they are compared with Schade's design curves and Mansour's design curves. Some examples for application are given and compared with the results obtained by FEM(SAPIV) in appendix.

  • PDF

Weight Control and Knot Placement for Rational B-spline Curve Interpolation

  • Kim, Tae-Wan;Lee, Kunwoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.192-198
    • /
    • 2001
  • We consider an interpolation problem with nonuniform rational B-spline curves given ordered data points. The existing approaches assume that weight for each point is available. But, it is not the case in practical applications. Schneider suggested a method which interpolates data points by automatically determining the weight of each control point. However, a drawback of Schneiders approach is that there is no guarantee of avoiding undesired poles; avoiding negative weights. Based on a quadratic programming technique, we use the weights of the control points for interpolating additional data. The weights are restricted to appropriate intervals; this guarantees the regularity of the interpolating curve. In a addition, a knot placement is proposed for pleasing interpolation. In comparison with integral B-spline interpolation, the proposed scheme leads to B-spline curves with fewer control points.

  • PDF