• Title/Summary/Keyword: Design condition

Search Result 8,946, Processing Time 0.04 seconds

Thermal Analysis Comparison of IMO with USCG Design Condition for the INGC During the Cool-down Period (급냉각기간에서 IMO설계조건과 USCG 설계조건에 대한 LMGC 화물탱크의 열해석 비교)

  • Lee, Jung-Hye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1390-1397
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000㎥ class GT-96 membrane type LNG carrier under IMO and USCG design condition. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls down from -4$0^{\circ}C$ to -l3$0^{\circ}C$, and the spraying rate for the cooling of the insulation wall increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the first barrier and the first insulation, which are among the insulation wall, especially in the top side of the insulation wall under IMO and USCG design condition. Also, as the NG temperature distribution is fixed, the outer temperature condition under the design condition has influence on the temperature variation at the insulation. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted under IMO and USCG design condition. From the comparison between two conditions; IMO design condition shows more severe temperature gradient than USCG design condition, therefore, it provides the conservative estimation of the BOG.

Aerodynamic Optimization Design for All Condition of Centrifugal Compressor

  • Lin, Zhirong;Gao, Xue-Lin;Yuan, Xin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.213-217
    • /
    • 2008
  • This paper describes an application of centrifugal compressor optimization system, in which the blade profile of impeller is represented with NURBS(Non-Uniform Rational B-Spline) curve. A commercial CFD(Computational Fluid Dynamics) program named NUMECA fine/turbo was used to evaluate the performance of the whole centrifugal compressor flow passage including impeller and diffuser. The whole optimization design system was integrated based on iSIGHT, a commercial integration and optimization software, which provides a direct application of some optimization algorithms. To insure the practicability of optimization, the performance of centrifugal compressor under all condition was concerned during the optimizing process. That means a compositive object function considering the aerodynamic efficiency, pressure ratio and mass flow rate under different work condition was applied by using different weight number for different conditions. Using the optimization method described in this paper, an optimized design of the impeller blade of centrifugal compressor was obtained. Comparing to the original design, optimized design has a better performance not only under the design work condition, but also the off-design work condition including near stall and near choke condition.

  • PDF

Present Condition and Preferences on Design Factors for Well-Being Apartments (웰빙아파트 계획요소의 도입현황과 선호도)

  • Choi, Yoon-Jung
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2006.05a
    • /
    • pp.49-52
    • /
    • 2006
  • The purposes of this study were to summarize the concept of well-being and well-being apartment, to grasp the present condition of apartments which were introduced with well-being factors, and to find out the consumer preferences of design factors for well-being apartment. Library and internet surveys were performed to summarize the concept of well-being and well-being apartment and to grasp the present condition of apartments which were introduced with well-being factors. Questionnaire survey was carried out from 2nd to 22nd of June 2005, to investigate the preferences of design factors for well-being apartment, and the respondents were 250 residents living in urban area. As major result, the design factors haying the preference were revealed as complex design, sports & health facility, and interior surface materials.

  • PDF

Identification of indirect effects in the two-condition within-subject mediation model and its implementation using SEM

  • Eujin Park;Changsoon Park
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.631-652
    • /
    • 2023
  • In the two-condition within-subject mediation design, pairs of variables such as mediator and outcome are observed under two treatment conditions. The main objective of the design is to investigate the indirect effects of the condition difference (sum) on the outcome difference (sum) through the mediator difference (sum) for comparison of two treatment conditions. The natural condition variables mean the original variables, while the rotated condition variables mean the difference and the sum of two natural variables. The outcome difference (sum) is expressed as a linear model regressed on two natural (rotated) mediators as a parallel two-mediator design in two condition approaches: the natural condition approach uses regressors as the natural condition variables, while the rotated condition approach uses regressors as the rotated condition variables. In each condition approach, the total indirect effect on the outcome difference (sum) can be expressed as the sum of two individual indirect effects: within- and cross-condition indirect effects. The total indirect effects on the outcome difference (sum) for both condition approaches are the same. The invariance of the total indirect effect makes it possible to analyze the nature of two pairs of individual indirect effects induced from the natural conditions and the rotated conditions. The two-condition within-subject design is extended to the addition of a between-subject moderator. Probing of the conditional indirect effects given the moderator values is implemented by plotting the bootstrap confidence intervals of indirect effects against the moderator values. The expected indirect effect with respect to the moderator is derived to provide the overall effect of moderator on the indirect effect. The model coefficients are estimated by the structural equation modeling approach and their statistical significance is tested using the bias-corrected bootstrap confidence intervals. All procedures are evaluated using function lavaan() of package {lavaan} in R.

Assessment of Slip Factor Models at Off-Design Condition (탈설계 조건에서의 미끄럼 계수 모텔들의 평가)

  • Yoon, Sung-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.410-415
    • /
    • 2000
  • Slip factor is defined as an empirical factor being multiplied to theoretical energy transfer for the estimation of real work input of a centrifugal compressor. Researchers have tried to develop a simple empirical model, for a century, to predict a slip factor. However most these models were developed on the condition of design point assuming inviscid flow. So these models often fail to predict a correct slip factor at off-design condition. In this study, we summarized various slip factor models and compared these models with experimental and numerical data at off-design condition. As a result of this study, Wiesner's and Paeng and Chung's models are applicable for radial impeller, but all the models are not suitable for backswept impeller. Finally, the essential avenues for future study is discussed.

  • PDF

Prediction of flow field in an axial compressor with a non-uniform tip clearance at the design and off-design conditions (설계점 및 탈설계점에서 비균일 익단 간극을 가지는 축류 압축기의 유동장 예측)

  • Kang, Young-Seok;Park, Tae-Choon;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.46-53
    • /
    • 2008
  • Flow structures in an axial compressor with a non-uniform tip clearance were predicted by solving a simple prediction method. For more reliable prediction at the off-design condition, off-design flow characteristics such as loss and flow blockage were incorporated in the model. The predicted results showed that flow field near the design condition is largely dependent on the local tip clearance effect. However overall flow field characteristics are totally reversed at off-design condition, especially at the high flow coefficient. The tip clearance effect decreases, while the local loss and flow blockage make a complicated effect on the compressor flow field. The resultant fluid induced Alford's force has a negative value near the design condition and it reverses its sign as the flow coefficient increases and shows a very steep increase as the flow coefficient increases.

A Study on the Rapid Prototyping using Automatic Design Program (자동설계 프로그램을 이용한 급속성형에 관한 연구)

  • 이승수;김민주;전언찬
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.15-22
    • /
    • 2002
  • A study is the selection of optimum forming condition for RP system. We develop the Automatic design program for machine element using visual LISP program in AutoCAD. Automatic design program reduces the required time for feedback between design and manufacturing of workpiece. Also we investigate the relationship between circularity of 3D solid model and circularity of rapid prototype using RP system and we will find optimum forming condition in RP system.

Design of a Local Ventilation System in the Non-Standard Air Condition using the Spreadsheet Model (스프레드시트 모델을 이용한 비표준 공기상태에서의 국소환기시스템의 설계)

  • 조석호
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.645-658
    • /
    • 1997
  • A study on ventilation design using the spreadsheet model is carried out to propose means of available design. A sample of complex ventilation system In the non-standard condition Is used to illustrate thins spreadsheet model. In developing the spreadsheet model, this study has attempted to it general by using computional equations and design parameters that can be readily applied to any spreadsheet software. Also, most design data is contained in the spreadsheet template. This template provides the same design information as the ACGIH worksheet, and operates Quickly and emclenuy, and is fiexible enough to use under different conditions. This spreadsheet model allows the ventilation engineer to design quickly and accurately the ventilation system, without spending too much effort In the design process. By storing on computer and diskette, the design data computed finally can be used as a permanent record of specific ventilation system, and because of finally to be able to design over and over again while making only slight changes to the Input data, the spreadsheet model is used availably to accomplish the design optimazation by redesign and troubleshooting by review from field measurements. Also, the spreadsheet model is available for designing ventilation system under different condition or evaluating existing system or design drawing, because changes In the layout or formulae can be readily made to fit the needs of the designer.

  • PDF

Observer-based H$_{\infty}$ Controller Design for Delayed Singular Systems (시간지연 특이시스템의 관측기 기반 H$_{\infty}$ 제어기 설계)

  • 김종해
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2489-2492
    • /
    • 2003
  • In this paper, observer-based H$\sub$$\infty$/ controller design method for singular systems with time-varying delay by Just one LMI condition is presented. The sufficient condition for the existence of controller and the controller design method are presented by one perfect LMI approach. The design procedure involves solving an LMI. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables.

  • PDF

A study on Optimum Design of the Frame for Mechanical Press (기계식 프레스 Frame의 최적설계에 관한 연구)

  • Jo, Baek-Hui;Ryu, Byeong-Sun
    • 연구논문집
    • /
    • s.22
    • /
    • pp.65-74
    • /
    • 1992
  • This paper aims at calculating optimum design dimensions to minimize the weight satisfied strain and stress intensity of the frame while loading maximum weight into a mechanical press in the static condition. Analysis of the frame was carried out by using the FEM, then the optimum condition was obtained by using these data. As modeling in the finite element analysis has great impact on the reliablity of analysis results, the analyzed object was selected a 150-ton mechanical press of J Company, the part little affected to structural rigidity was simplified, the load condition was considered in the only maximum load, the boundary condition was used by giving symmetric displacement due to symmetric boundary condition, the finite element was applied a linear membrane element. An intermediate processor program applied the normal ANSYS to analyze finite elements was developed, and the design sensitivity was calculated. This program was applied to the optimum design.

  • PDF