• Title/Summary/Keyword: Design concentration

Search Result 2,767, Processing Time 0.032 seconds

A study on sedimentation characteristic according to concentration change of top soil lost by flood (유실토양의 농도변화에 따른 침강특성에 대한 연구)

  • Jeon, Young-Bong;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.581-587
    • /
    • 2014
  • Sediment basin that is typical facility installed for development business to prevent soil erosion has low removal efficiency and therefore, it causes complaints from the residents and has a bad effect on ecosystem. Thus there is a limit to control soil erosion using the existing design methods of sediment basin, so the purposes of this study is providing suitable design factors for sediment basin with regarding soil characteristic of development areas and analysing sedimentation characteristic by inflow concentration changes. The results, for analyzing the sedimentation characteristic by soil concentrations within approximately 2,000 ~ 20,000 mg/L of initial SS concentration, indicated similar sedimentation trends for same soil in the supernatant regardless of initial concentrations. However, for different soil characteristic (percent finer), there are different results in sedimentation rate and concentrations of the supernatant. Thus it is recommended that sediment basin to prevent soil erosion during construction should be designed based on retention time derived from soil sedimentation experiments regardless of inlet concentration. In addition, installing the soil erosion prevention facility at the back to satisfy effluent water quality should be considered to minimize soil erosion effectively.

Model Experiments on Prediction of Effluent Concentration of Suspended Solid in Containment of Dumping Dredged Soil (준설투기장내 부유물질 유출농도 예측에 관한 모형실험)

  • Lee, Dongwon;Jun, Sanghyun;Yoo, Kunsun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, model experiments in the laboratory were carried out to predict the effluent concentrations of suspended solid in containment of dumping dredged soils and test results were compared with results estimated by the currently used design method. Model tests of simulating dumping the dredged soils with a pump dredger in field were performed with changing the influent concentration and the length of containment and effluent concentration of suspended solid with time were measured during tests. As results of comparing test results about effluent concentration with those estimated from the design method by US Army COE(1987), they were confirmed to be in relatively good agreements.

Biofilter Treatment of Waste Air Containing Malodor and VOC: 2. Transient Behavior of Biofilter with Improved Design to Eliminate Malodor and VOC (악취 및 VOC를 함유한 폐가스의 바이오필터 처리: 2. 개선된 바이오필터설계에 의한 악취 및 VOC 제거거동)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.136-143
    • /
    • 2013
  • In this study, both transient behaviors of a biofilter system with improved design and a conventional biofilter were observed to perform the treatment of waste air containing malodor and volatile organic compound (VOC). Their behaviors of removal efficiency and treated concentration of malodor and VOC were compared each other. During 1st~7th stages of improved biofilter system operation it was observed that the order of treated ethanol concentration at each sampling port was switched due to the difference of microbe-population-distribution in spite of the difference of biofilter effective height. However, at 8th stage of its operation, the order of treated ethanol concentration at each sampling port was consistent to the order of biofilter effective height at each sampling port. The same was applied to the case of hydrogen sulfide, even though the difference of switched treated-hydrogen sulfide-concentrations was less than that of switched treated-ethanol-concentrations. The ethanol-removal efficiency of the biofilter system with improved design was ca. 96%, which was greater by 2% than that of the conventional biofilter. The transient behavior of treated hydrogen sulfide concentration of both biofilters were similar to each other. However, the concentration of hydrogen sulfide treated by the biofilter system with improved design was observed lower than that by the conventional biofilter. The hydrogen sulfide-removal efficiency of the biofilter system with improved design was higher by ca. 2% than that of the conventional biofilter. Therefore, the hydrogen sulfide-removal efficiency of the biofilter system with improved design was observed to be enhanced by the same as its ethanol-removal efficiency.

Stress Analysis and Design Improvement to Prevent Failure of the Damping Hinges of Built-in Refrigerators (빌트인 냉장고 댐핑힌지의 응력해석 및 파손방지를 위한 설계개선)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.81-88
    • /
    • 2020
  • The damping hinge of a built-in refrigerator was examined in terms of its stress and fatigue life. Analysis of the initial design showed that stress concentration occurred at the concave surface of the hinge lever, which was broken during the door opening-and-closing endurance test of the prototype. The maximum von Mises stress at this location exceeded the yield strength. In addition, Goodman fatigue analysis of the initial design showed that the fatigue life at this location was consistent with the failure observed during the endurance test. Based on these results, an improved design for the damping hinge was derived. Analysis of this improved design showed that the stress concentration in the hinge lever of the initial design was eliminated. In this case, the maximum stress occurred at the position where the hinge lever was in contact with the door stopping pin, and the maximum von Mises stress was smaller than the yield strength. Goodman fatigue analysis of the improved design indicated that the fatigue life of the entire damping hinge was infinite. It was therefore concluded that the improved design does not suffer from fatigue damage during the endurance test.

Ownership Concentration, Board Education Diversity, and Environmental Accounting Disclosure in Kenyan Listed Firms. Moderation Approach

  • TARUS, John Kipngetich
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The purpose of this study was to examine the moderating effect of board education diversity on the relationship between ownership concentration and environmental accounting disclosure. The study was driven by stakeholder's theory. The longitudinal research design was adopted in the study. The study targeted 27 listed firms from 2008 to 2017. Panel regression analysis results indicated ownership concentration (β = -.131, ρ<.05) had a negative and significant effect on environmental disclosure in Kenyan firms. However, Board education diversity positively moderated the relationship between ownership concentration (β=.138, ρ<.05) and environmental accounting disclosure. Thus, board education diversity is an enhancing moderator in the relationship between ownership concentration and environmental accounting disclosure. The findings validate stakeholder theory's proposition. The study recommends that firms listed in the NSE ought to diffuse ownership concentration, and their boards should be well educated and experienced to enhance environmental accounting disclosure.

VENTILATION DESIGN OF UNDERGROUND PARKING AREA IN A NEW BUILDING USING CFD (CFD를 이용한 신축건물 내 지하주차장의 환기설계)

  • Kim, J.H.;Yang, S.Y.;Lee, G.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.59-63
    • /
    • 2007
  • With the recent increasing demand on the high-performance buildings, there has been a rapid growth in the application of the Computational Fluid Dynamics to the Building design. The conceptual ventilation design of the underground parking area currently under construction is validated using the CFD-ACE+. It has been found that the conceptual ventilation design quantitively satisfies the legal standards. However, the highly concentrated region of CO is predicted. The positions and blowing directions of ventilating lane are changed based on the previously predicted concentration distributions. The highly concentrated region of CO is slightly reduced, but not much change has been observed. Two more fang are installed and the positions and blowing directions of the fans are modified so that the highly concentrated region of CO is minimized.

  • PDF

The Persimmon Dye with Experiment of Changing Concentration and Iron-dye Process, its Application Possibility for Textile Design (감염색의 농도변화와 매염효과를 통해본 천연염색 디자인)

  • Lee, Soon-Deuk
    • Fashion & Textile Research Journal
    • /
    • v.10 no.6
    • /
    • pp.822-826
    • /
    • 2008
  • The data for application of mordanting is shown in this experiment by researching dying properties of iron-dye process and concentration changes using persimmon. The strength of persimmon-dying fabrics was controlled by diluting persimmon dye with water and iron mordanting showed the possibility of textile design. The experiments were performed with various conditions processed with iron mordanting liquid by adding water to persimmon-dying liquid and drying well. The most dark color of fabric is observed with the pure persimmon dying without adding water. As the adding water is increased, the color of the fabric is getting lighter with the amount of adding water. After process of iron mordanting, dark color of the fabric turns into dark grey and light color turns into light grey. The possibility of persimmon dying with fabric can be applied in the design of textile with deepened color.

Design and Performance of Bio-Aerosol Concentrator Inlet (생물학적 에어로졸 선별농축기의 도입부 설계 및 성능평가)

  • 김대성;김민철;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.121-123
    • /
    • 1999
  • Bio-Aerosol Concentrator Inlets were made to collect particles of which size was $2\mu\textrm{m}$ as aerodynamic diameter or larger. The Concentrator Inlets were designed by using virtual impactors, because the virtual impactors are known for high efficiency. In a virtual impactor, the intake air is typically divided into two streams with the major and the minor flow. In this work, several types of the acceleration nozzles and collection probes were designed. Subsequently, the results were evaluated experimentally. It was found that if controled properly, the velocity can improve substantially the aerosol concentration performance. The diameter of acceleration nozzle and type of collection probe were varied to obtain the optimum design. Subsequently, the different designs were compared respectively and the best design among them was identified. It is expected that this new finding can help improve design of future Aerosol Concentrator for high concentration rate.

  • PDF

Optimization of bioethanol production from nigerian sugarcane juice using factorial design

  • Suleiman, Bilyaminu;Abdulkareem, Saka A.;Afolabi, Emmanuel A.;Musa, Umaru;Mohammed, Ibrahim A.;Eyikanmi, Tope A.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.69-86
    • /
    • 2016
  • The quest to reduce the level of overdependence on fossil fuel product and to provide all required information on proven existing alternatives for renewable energy has resulted into rapid growth of research globally to identify efficient alternative renewable energy sources and the process technologies that are sustainable and environmentally friendly. The present study is aimed at production and characterization of bioethanol produced from sugarcane juice using a $2^4$ factorial design investigating the effect of four parameters (reaction temperature, time, concentration of bacteria used and amount of substrate). The optimum bioethanol yield of 19.3% was achieved at a reaction temperature of $30^{\circ}C$, time of 72 hours, yeast concentration of 2 g and 300 g concentration of substrate (sugarcane juice). The result of statistical analysis of variance shows that the concentration of yeast had the highest effect of 7.325 and % contribution of 82.72% while the substrate concentration had the lowest effect and % contribution of -0.25 and 0.096% respectively. The bioethanol produced was then characterized for some fuel properties such as flash point, specific gravity, cloud point, pour point, sulphur content, acidity, density and kinematic viscosity. The results of bioethanol characterization conform to American society for testing and materials (ASTM) standard. Hence, sugarcane juice is a good and sustainable feedstock for bioethanol production in Nigeria owing relative abundance, cheap source of supply and available land for large scale production.

A Study on the Stress Distribution and Stress Concentration of Pipe with Respect to Attached Shape and Method of the Bracket in a Welding Structure (브래킷 결합형식에 따른 용접 구조물의 파이프에서 발생하는 응력분포와 응력집중에 관한 연구)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han , Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.28-37
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method and test for considering stress distribution and stress concentration to be generated according to the change of attached shape and method of the bracket to pipe in welding structure. Generally, members that consist structures are subjected to various forces and are jointed each other with a number of bracket. In this case, circular pipe was adapted in order to weld these members easily and to study the optimal design which is used a beam with shape section as main components of the structure, According to attached shape and method, distributed stress on circular pipe is appeared so differently. This may result deeply effects with respect to thickness, material properties. So a study on attaching shape and method of bracket to circular pipe is needed. In this paper, to obtain the maximum equivalent stress or stress concentration was used experimental and F.E.M. analysis. First five parameter was defined with respect to attached a shape and method to circular pipe i.e. the variation of the attached area, the variation of the attached shape, the variation of the attached length, the variation of both directin angles, the variation of the upper angle. Afterward the experimental analysis was practiced as the variation of the both direction angel and the finite element analysis was practiced as each parameters. We can discover stress distribution and stress concentration according to the change of form of bracket. And the result can be referenced for a design of similar structure.

  • PDF