• 제목/요약/키워드: Design capacity

검색결과 5,668건 처리시간 0.03초

Capacity design considerations for RC frame-wall structures

  • Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • 제1권4호
    • /
    • pp.391-410
    • /
    • 2010
  • There are several important considerations that need to be made in the capacity design of RC frame-wall structures. Capacity design forces will be affected by material overstrength, higher mode effects and secondary loadpaths associated with the 3-dimensional structural response. In this paper, the main issues are identified and different means of predicting capacity design forces are reviewed. In order to ensure that RC frame-wall structures perform well it is explained that the prediction of the peak shears and moments that develop in the walls is particularly important and unfortunately very challenging. Through examination of a number of case study structures it is shown that there are a number of serious limitations with capacity design procedures included in current codes. The basis and potential of alternative capacity design procedures available in the literature is reviewed, and a new simplified capacity design possibility is proposed. Comparison with the results of 200 NLTH analyses of frame-wall structures ranging from 4 to 20 storeys suggest that the new method is able to predict wall base shears and mid-height wall moments reliably. However, efforts are also made to highlight the uncertainty with capacity design procedures and emphasise the need for future research on the subject.

Reliability of column capacity design in shear

  • Thomos, George C.;Trezos, Constantin G.
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.507-521
    • /
    • 2012
  • The capacity design of shear forces is one of the special demands of EC8 by which the ductile behavior of structures is implemented. The aim of capacity design is the formation of plastic hinges without shear failure of the elements. This is achieved by deriving the design shear forces from equilibrium conditions, assuming that plastic hinges, with their possible over-strengths, have been formed in the adjacent joints of the elements. In this equilibrium situation, the parameters (dimensions, material properties, axial forces etc) are random variables. Therefore, the capacity design of shear forces is associated with a probability of non-compliance (probability of failure). In the present study the probability of non-compliance of the shear capacity design in columns is calculated by assuming the basic variables as random variables. Parameters affecting this probability are examined and a modification of the capacity design is proposed, in order to achieve uniformity of the safety level.

Capacity Design of RC Bridge Columns for Seismic Loading

  • 이재훈;고성현;최진호;신성진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.591-594
    • /
    • 2004
  • Recently, a tendency for development of seismic approach of foreign countries is capacity design development. Capacity design is rational seismic design concept of capacity protection considering not only earthquake magnitude, but also behavior of structure. For that reason, the most bridge seismic design specifications contain capacity protection provisions explicitly or implicitly. The capacity protection is normally related with slenderness effect of the columns, force transfer in connections between columns and adjacent elements, and shear design of columns. It intends to prevent brittle failure of the structural components of bridges, so that the whole bridge system may show ductile behavior and failure during earthquake events. The objectives of this paper are to deduce needed provisions for the moderate seismicity regions such as Korea after studying current seismic design codes and to establish rational criteria provisions of seismic design for future revision of seismic design specifications.

  • PDF

능력설계에 의한 RC 연결전단벽 구조의 내진설계 (Application of Capacity Design Methodology to RC Coupled Shear Wall)

  • 이한선;정성욱;고동우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.295-298
    • /
    • 2005
  • Coupled shear wall(CSW) has been adopted as a lateral force resisting system in building frame structures. New Zealand code recommends the capacity design in designing the CSW. Capacity design based on using moment redistribution of member force may provide the economical benefit to designer. In this study, CSW's are designed by both capacity design and strength -based design. The design results and the seismic performance are compared by using nonlinear static analyses. The amount of reinforcement of shear wall and the section area of steel coupling beams by capacity design appear to be reduced by 19$\%$ and 17$\%$, respectively. Also CSW designed by capacity design shows good seismic performance at the ultimate state.

  • PDF

암반에 근입된 SIP 말뚝의 지지력 특성에 관한 연구 (A Study on the Characteristics of Bearing Capacity for SIP Piles constructed on Rock Mass)

  • 김태훈;박준홍;이송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.295-300
    • /
    • 2002
  • In this research problems of recent design methods and their improvement for SIP in domestic areas were studied by using the characteristics of load-settlement curves and bearing capacity from field loading tests. Elastic and plastic settlement for total settlement in each loading step conducted domestic areas had a tendency. From these tendency and bearing capacity determined by loading tests we can ascertain that empirical chart can be assistant tool in SIP design. It showes that SIP design using N-value in domestic area with soil condition of grarute type results in very conservative bearing capacity, to be opposed in soil with unprofitable geological condition the design can be insecure. Also, we can ascertain that Meyerhof's bearing capacity used modified N-value on tip part of pile is more applicable than recent design method where tip bearing capacity is 20NAp N-value limited to 50. These results show that modified design method can he more economic than before because of using pile's bearing capacity to tolerable load of pile material.

  • PDF

Reliability based calibration of the capacity design rule of reinforced concrete beam-column joints

  • Thomos, George C.;Trezos, Constantin G.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.631-645
    • /
    • 2011
  • The capacity design rule for beam-column joints, as adopted by the EC8, forces the formation of the plastic hinges to be developed in beams rather than in columns. This is achieved by deriving the design moments of the columns of a joint from equilibrium conditions, assuming that plastic hinges with their possible overstrengths have been developed in the adjacent beams of the joint. In this equilibrium the parameters (dimensions, material properties, axial forces etc) are, in general, random variables. Hence, the capacity design is associated with a probability of non-compliance (probability of failure). In the present study the probability of non-compliance of the capacity design rule of joints is being calculated by assuming the basic variables as random variables. Parameters affecting this probability are examined and a modification of the capacity design rule for beam-column joints is proposed, in order to achieve uniformity of the safety level.

Investigation of design methods in calculating the load-carrying capacity of mortise-tenon joint of timber structure

  • Hafshah Salamah;Seung Heon Lee;Thomas H.-K. Kang
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.307-323
    • /
    • 2023
  • This study compares two prominent design provisions, National Design Specification (NDS) and Eurocode 5, on load-carrying capacity calculations and failure analysis for mortise-tenon joints. Design procedures of double-shear connection from both provisions were used to calculate load-carrying capacity of mortise-tenon joints with eight different bolt sizes. From this calculation, the result was validated using finite element analysis and failure criteria models. Although both provisions share similar failure modes, their distinct calculation methods significantly influence the design load-carrying capacity values. Notably, Eurocode 5 predicts a 6% higher design load-carrying capacity for mortise-tenon joints with varying bolt diameters under horizontal loads and 14% higher under vertical loads compared to NDS. However, the results from failure criteria models indicate that NDS closely aligns with the actual load-carrying capacity. This indicates that Eurocode 5 presents a less conservative design and potentially requires fewer fasteners in the final timber connection design. This evaluation initiates the potential for the development of a wider range of timber connections, including mortise-tenon joints with wooden pegs.

스파이럴 그루브 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구 (A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing)

  • 강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제18권3호
    • /
    • pp.181-186
    • /
    • 2002
  • A numerical analysis is undertaken to show the influence of bearing design parameters on the load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, and the seal ratio.

베어링궤도 제조공정의 용량설계에 관한 사례연구 (A Case Study on the Capacity Design for Manufacturing Process of Bearing-Race)

  • 문덕희;송성
    • 산업공학
    • /
    • 제15권4호
    • /
    • pp.349-355
    • /
    • 2002
  • In order to build a new factory, we must have answers regarding the following questions; 1. what is to be produced? 2. how are the products to be produced? 3. how much of each product will be produced? The answers are related to product-design, process-design and capacity-design respectively and they are used for layout-design as the input data. Especially capacity design decision provides the information regarding the number of equipments required and the balance of the line. This paper introduces a case study on the capacity design for a new factory where the retainers of ball bearing are manufactured. A simulation model is developed with ARENA for analyzing the system considered. The major objectives of the study are evaluating the performance of the line which is originally suggested by the company, and finding out alternatives for improving the system. Number of WIP between the processes are also investigated because it affects the space planning of the layout.

에너지 소산능력을 고려한 전단벽의 내진설계 (Seismic Design Method for Structural Walls Based on Energy Dissipation Capacity)

  • 박홍근;엄태성;정연희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.247-257
    • /
    • 2002
  • Recently, performance-based analysis/design methods such as the capacity spectrum method and the direct displacement-based design method were developed. In these methods, the estimation of energy dissipation capacity due to inelastic behavior of RC structures depends on empirical equations which are not sufficiently accurate. On the other hand, in a recent study, a simplified method for evaluating energy dissipation capacity was developed. In the present study, based on the evaluation method, a new seismic design method for flexure-dominated RC walls is developed. In determination of seismic earthquake load, the proposed design method can address variation of the energy dissipation capacity with design parameters such as dimensions and shapes of cross-sections, axial force, and reinforcement ratio and arrangement. The proposed design method is compared with the current performance-based design methods and the applicability of the proposed method is disscussed.

  • PDF