• Title/Summary/Keyword: Design and Fabrication

Search Result 2,714, Processing Time 0.03 seconds

Full mouth rehabilitation with maxillary implant overdenture using prefabricated bar attachment system: a case report (기성품 바 어태치먼트 시스템인 SFI bar를 이용한 피개의치 전악수복 증례)

  • Shin, Eun-Jung;Joo, Han-Sung;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil;Yun, Kwi-Dug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.331-337
    • /
    • 2014
  • In conventional bar- and clip-retained overdentures, all errors during impression making and cast fabrication result in non-passive fit of bars. SFI bar is prefabricated and assembled in the patient's mouth without the use of soldering, laser welding or conventional bonding techniques, thus reducing stress transmission to, bone loss around the implants and leading to fewer errors and lower costs. A clinical case will be presented below to demonstrate the use of the SFI Bar (Stress Free on Implant Bar) to restore an severe atrophy edentulous maxilla. In this case, no lateral stress could be applied to the implants due to the telescopic design of the bar joints. However, periodic recall check is necessary and long-term clinical results are required.

Fabrication and Evaluation of High Frequency Ultrasound Receive Transducers for Intravascular Photoacoustic Imaging (혈관내 광음향 영상을 위한 고주파수 초음파 수신 변환기 제작 및 평가)

  • Lee, Jun-Su;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.300-308
    • /
    • 2014
  • Photoacoustic imaging is a useful tool for the diagnosis of atherosclerosis because it is capable of providing anatomical and pathological information at the same time. A photoacoustic signal detector is a pivotal element to achieve high spatial resolution, so that it should have broadband spectrum with a high center frequency. Since a photoacoustic imaging probe is directly inserted into blood vessel to diagnose atherosclerosis, the total size of the photoacoustic signal detector should be less than 1 mm. The main purpose of this paper is to demonstrate that PVDF can be used as an active material for the photoacoustic signal detector with a high frequency and broadband characteristic. The photoacoustic signal detector developed in this study was a single element ultrasound transducer with an aperture of $0.5{\times}0.5mm$ and the total size of 1 mm. In the design stage, the natural focal depth was adjusted for an effective focal area to cover the region of interest, i.e., 1~5 mm in depth. This was because geometrical focusing could not be used due to the small aperture. Through a pulse-echo test, it was ascertained that the developed photoacoustic signal detector has the -6 dB bandwidth ranging between 40.1 and 112.8 MHz and the center frequency of 76.83 MHz.

An Economic Mix Design Methodology for the Development of Concrete Strength at Low Temperature (저온에서의 콘크리트 강도 확보를 위한 경제적 배합 방안)

  • Kim, Sang-Chel;Kim, Yong-Jic;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.95-103
    • /
    • 2012
  • Precast concrete method is known to have advantages of minimizing works in the construction, controlling concrete quality easily and saving construction period due to only fabrication work in the construction field, but it needs to apply steam curing to accelerate early concrete strength. In the meanwhile, the oil cost for steam curing has been continuously increased because of political instability in the middle East and international economic shaky. Thus, this study addresses the development of precast/ prestressed concrete which has over 14MPa at 1 day age and specified concrete strength of 40MPa at low temperature, not applying steam curing. Tests were carried out in terms of material characteristics in fresh concrete and compressive strength using 3 types of cement such as Type I, Type III and rapid hardening compound cement. As results of tests, it is found that cements for rapid hardening had disadvantages with respect to slump, slump loss, and air content, but showed higher compressive strength than specified one, especially the highest value when using rapid hardening compound.

  • PDF

Fabrication of a Ultrathin Ag Film on a Thin Cu Film by Low-Temperature Immersion Plating in an Grycol-Based Solution (글리콜 용매 기반 저온 치환 은도금법으로 형성시킨 동박막 상 극박 두께 Ag 도금층)

  • Kim, Ji Hwan;Cho, Young Hak;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • To investigate the plating properties of a diethylene glycol-based Ag immersion plating solution containing citric acid, silver immersion plating was performed in a range from room temperature to $50^{\circ}C$ using sputtered Cu specimens. The used Cu specimens possessed surface structure with large numbers of pinholes which were created with over-acid etching. The Ag immersion plating performed at $40^{\circ}C$ exhibited that the pinholes and copper surface were completely filled with Ag just after 5 min mainly due to galvanic displacement reaction, indicating the best plating properties. Subsequently, the surface morphology of Ag-coated Cu became rougher as the plating time increased to 30 min because of the deposition of silver nanoparticles created by chemical reduction in the solution. The specimen that its overall surface was covered with silver indicated the start of oxidation at temperature higher than around $50^{\circ}C$ in air as compared with pure Cu, indicating enhanced anti-oxidation properties.

Development of Dispenser System with Electrohydrodynamic and Voice Coil Motor for White Light Emitting Diode (백색 LED 제조를 위한 정전기력과 보이스코일모터를 이용한 디스펜서 시스템 개발)

  • Kang, Dong-Seong;Kim, Ki-Beom;Ha, Seok-Jae;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6925-6931
    • /
    • 2015
  • LED(Light Emitting Diode) is used in various filed like a display because of low power consuming, long life span, high brightness, rapid response time and environmental-friendly characteristic. General fabrication method is combination blue light LED chip with yellow fluorescent substance. Because this way is suitable for industry field in terms of convenience, economic, efficiency. In white light LED packaging process, encapsulation process that is dispensing fluorescent substance with silicon to blue light LED chip is most important. So, in this paper we develop EHD pump system using voice coil motor and electrostatic pump for dispensing fluorescent substance. For these things we conduct basic test about liquid surface profiles by voltage and process time. Through this data we decide optimal process condition and verify the optimal condition using design of experiment method. And to confirm uniformity of the condition, we conduct repeat dispensing test.

Design and Fabrication of HgI2 Sensor for Phosphor Screen based flat panel X-ray Detector (형광체 스크린 기반 평판형 X선 검출기 적용을 위한 요오드화수은 필름 광도전체 센서 설계 및 제작)

  • Park, Ji Koon;Jung, Bong Jae;Choi, Il Hong;Noh, Si Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.189-194
    • /
    • 2014
  • In this study, from a new x-ray detector that combines a columnar CsI:Na scintillation layer with a photosensitive mercuric iodide layer was investigated. In this structure, X-rays are converted into visible light on a thick CsI:Na layer, which is then converted to electric charges in a thin $HgI_2$ bottom layer. The thin coplanar mercuric iodide films as a photosensitive converter requiring only a few tens of volts of bias, associated with a thick columnar coating of phosphor layer, were simulated and designed. The results of this research suggest that the new coplanar x-ray detector with a hybrid-type structure can resolve the following problems: high voltage from the a-Se, and low conversion efficiency from the indirect conversion method. The results of this research suggest that the new CsI:Na/$HgI_2$ x-ray detector with a double-layer type structure can resolve the following problems: high voltage from the direct conversion method, and low conversion efficiency from the indirect conversion method.

Development of Compact and Lightweight Broadband Power Amplifier with HMIC Technology (HMIC 기술을 적용한 소형화 경량화 광대역 전력증폭기 개발)

  • Byun, Kisik;Choi, Jin-Young;Park, Jae Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.695-700
    • /
    • 2018
  • This paper presents the development of compact and lightweight broadband power amplifier module using HMIC (Hybrid Microwave Integrated Circuit) technology that could be high-density integration for many non-packaged microwave components into the small area of a high dielectric constant printed circuit board, such as a ceramic substrate, also using the special design and fabrication schemes for the structure of minimized electromagnetic interference to obtain the homogeneous electrical performance at the wideband frequency. The results confirmed that the small signal gain has a gain flatness of ${\pm}1.5dB$ within the range of 32 to 36 dB. In addition, the output power satisfied more than 30 dBm. The noise figure was measured within 7 dB, and OIP3 (Output Third Order Intercept Point) was more than 39 dBm. The fabricated broadband power amplifier satisfied the target specification required to electrically drive the high power amplifiers of jamming generators for electronic warfare, so the actual applicability to the system was verified. Future studies will be aimed at designing other similar microwave power amplifiers in the future.

Optimization of preform mold injection molding process for hemispheric plastic structure fabrication (반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화)

  • Park, Jeong-Yeon;Ko, Young-Bae;Kim, Dong-Earn;Ha, Seok-Jae;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

Vibration characteristics of an ultrasonic waveguide for cooling (냉각용 초음파 웨이브가이드의 진동 특성)

  • Kim, Hyunse;Lim, Euisu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.568-575
    • /
    • 2020
  • Ultrasound has been widely used in various industrial fields. One of challenging application areas is cooling microelectronics. Ultrasonic cooling systems can work with air, argon (Ar) and nitrogen (N2) instead of conventional refrigerant such as freon gas, which can cause global warming. Furthermore, ultrasonic systems do not have moving parts, thus high durability can be obtained. So it is necessary to develop ultrasonic cooling systems due to environmental issues and durability points. In this paper, the design and fabrication processes are explained. When designing the system, a feasibility test was performed with a prototype cooler. Based on the result, finite element analysis with ANSYS software was performed. The predicted anti-resonance frequency for a piezoelectric actuator was 34.8 kHz, which was in good agreement with the experimental result of 34.6 kHz with 0.6% error. In addition, the predicted anti-resonance frequency for the ultrasonic waveguide was 39.4 kHz, which also agreed well with the experimental value of 39.8 kHz with 1.0% error. Based on these results, the developed ultrasonic waveguide might be applicable in microchip cooling.

STSAT-3 Main Payload, MIRIS Flight Model Developments

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • The Main payload of the STSAT-3 (Korea Science & Technology Satellite-3), MIRIS (Multipurpose Infra-Red Imaging System) has been developed for last 3 years by KASI, and its Flight Model (FM) is now being developed as the final stage. All optical lenses and the opto-mechanical components of the FM have been completely fabricated with slight modifications that have been made to some components based on the Engineering Qualification Model (EQM) performances. The components of the telescope have been assembled and the test results show its optical performances are acceptable for required specifications in visual wavelength (@633 nm) at room temperature. The ensuing focal plane integration and focus test will be made soon using the vacuum chamber. The MIRIS mechanical structure of the EQM has been modified to develop FM according to the performance and environment test results. The filter-wheel module in the cryostat was newly designed with Finite Element Analysis (FEM) in order to compensate for the vibration stress in the launching conditions. Surface finishing of all components were also modified to implement the thermal model for the passive cooling technique. The FM electronics design has been completed for final fabrication process. Some minor modifications of the electronics boards were made based on EQM test performances. The ground calibration tests of MIRIS FM will be made with the science grade Teledyne PICNIC IR-array.

  • PDF