• Title/Summary/Keyword: Design Spectrum

Search Result 1,398, Processing Time 0.027 seconds

Diffraction Characteristics for Optical Bio-Sensor of Bi-level Grating with Mushroom Profile (버섯형 이중 격자구조의 광 바이오센서에 대한 회절 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.129-134
    • /
    • 2022
  • The resonant bio-sensor of bi-level grating structure with mushroom profile has been designed for operating in the near-infrared (NIR) wavelength range under transverse electric (TE) polarization. The rigorous modal transmission-line theory (MTLT) is applied to determine the optical characteristics, and the reflection resonance of the grating structure is analyzed by varying their geometrical parameters. The numerical result shows that an excited sharp Fano resonance (FR), which does not occur in single layer grating, is demonstrated. The relationship between structure parameters of bi-level grating and the reflectance spectrum in order to guarantee the appearance of FR in the designed structure is fully investigated. An optical bio-sensor with a potential sensitivity of 112.9~214.3 deg/RIU and 447 nm/RIU is designed based on the proposed structure. The proposed mushroom profile may serve as a powerful sample for the design of optical bio-sensors with a wide range of applications.

The detection efficiency study of NaI(Tl) scintillation detector with the different numbers of SiPMs

  • Wang, Bao;Zhang, Xiongjie;Wang, Qingshan;Wang, Dongyang;Li, Dong;Xiahou, Mingdong;Zhou, Pengfei;Ye, Hao;Hu, Bin;Zhang, Lijiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2564-2571
    • /
    • 2022
  • SiPMs are generally coupled into whole columns in gamma energy spectrum measurement, but the relationship between the distribution of whole SiPM columns and the energy resolution of the measured energy spectra is rarely reported. In this work, ∅ 3 × 3 inch NaI scintillator is placed on an 8 × 8 SiPM array, and the energy resolution of the 137Cs peak at 662 keV corresponding to the γ-ray is selected as a reference. Each SiPM is switched to explore the influence of the number of SiPM arrays, distribution position, and reflective layer on the energy resolution of SiPMs. Results show that without coupling, the energy resolution is greatly improved when the number of SiPMs ranges from 4 to 32. However, after 32 slices (the area covered by SiPMs relative to the scintillator reaches 25.9%), the improvement in energy resolution and total pulse count is not obvious. In addition, the position of SiPMs relative to the scintillator does not exert much impact on the energy resolution. Results also indicate that by adding a reflective film (ESR), the energy resolution of the tested group increases by 10.38% on average. This work can provide a reference for the design and application of miniaturized SiPM gamma spectrometers.

Study of Lettuce Growth Characteristic on Selective Light Transmitting Filter Film Covered Greenhouse (선택적 광 투과에 따른 상추 생육특성)

  • Kang, D.H.;Hong, S.J.;Lee, J.W.;Kim, D.E.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2020
  • This study aimed to investigate responses of plant growth and photosynthesis to different kinds of covering materials with selective light transmit for red leaf lettuce (Lactuca sativa L.). Experimental pot design was attached UV blocking filter, red filter, blue filter, and green filter. The kinds of covering materials showed significant results for plant growth especially control, UV blocking filter, and red filter. The photosynthetic rate and anthocyanin content of red leaf lettuce were higher in control and UV blocking filter than others. The quality of red leaf lettuce was low in red, green, and blue film treatments because of too low anthocyanin content.

Assessment of Tribological Characteristics of CoCrW and CoCrMo Alloys (CoCrW와 CoCrMo 합금의 트라이볼로지 특성 평가)

  • Kwon, Dong-Gyun;Oh, Se-Jin;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.162-169
    • /
    • 2022
  • Cobalt-chromium (CoCr)-based alloys have been used for wear applications because of their excellent mechanical properties and wear resistance. With growing concern over environmental problems, CoCr alloys are expected to be used for various tribological applications in degraded lubrication states. To expand the applicability of the materials, data should be accumulated across a broad spectrum of experimental parameters. In this work, the friction and wear characteristics of cobalt-chromium-tungsten (CoCrW) and cobalt-chromium-molybdenum (CoCrMo) alloys are investigated experimentally. The tests are conducted using a pin-on-reciprocating-plate tribotester in dry lubrication. CoCrW and CoCrMo are used as pin and plate materials to investigate the effect of the counter material. The results show that the friction coefficients between CoCrW and CoCrMo generally range from 0.4 to 0.5. The friction coefficient between the CoCrW pin and plate is found to be slightly small. However, the total wear between the CoCrW pin and plate is found to be the largest. In contrast, the total wear between the CoCrW pin and plate is relatively small. Furthermore, CoCrW may cause a faster wear progression of CoCrMo, especially for the case in which CoCrMo is used as the pin material. The results of this work provide a better understanding of the tribological properties of CoCrW and CoCrMo alloys. In addition, this work provides a practical guideline for the use of CoCrW and CoCrMo from the tribological design viewpoint.

Anti-reflection Coating of PDMS by Screen-printing on Large Area of Silicon Solar Cells (대면적 실리콘 태양전지의 PDMS 도포에 의한 반사방지막 특성)

  • MyeongSeob, Sim;Yujin, Jung;Dongjin, Choi;HyunJung, Park;Yoonmook, Kang;Donghwan, Kim;Hae-Seok, Lee
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.95-100
    • /
    • 2022
  • Solar cell is a device that converts photon energy into electrical energy. Therefore, absorption of solar spectrum light is one of the most important characteristics to design the solar cell structures. Various methods have emerged to reduce optical losses, such as textured surfaces, back contact solar cells, anti-reflection layers. Here, the anti-reflection coating (ARC) layer is typically utilized whose refractive index value is between air (~1) and silicon (~4) such as SiNx layer (~1.9). This research is to print a material called polydimethylsiloxane (PDMS) to form a double anti-reflection layer. Light with wavelength in the range of 0.3 to 1.2 micrometers does not share a wavelength with solar cells. It is confirmed that the refractive index of PDMS (~1.4) is an ARC layer which decreases the reflectance of light absorption region on typical p-type solar cells with SiNx layer surface. Optimized PDMS printing with analyzing optical property for cell structure can be the effective way against outer effects by encapsulation.

A Deep Learning-based Automatic Modulation Classification Method on SDR Platforms (SDR 플랫폼을 위한 딥러닝 기반의 무선 자동 변조 분류 기술 연구)

  • Jung-Ik, Jang;Jaehyuk, Choi;Young-Il, Yoon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.568-576
    • /
    • 2022
  • Automatic modulation classification(AMC) is a core technique in Software Defined Radio(SDR) platform that enables smart and flexible spectrum sensing and access in a wide frequency band. In this study, we propose a simple yet accurate deep learning-based method that allows AMC for variable-size radio signals. To this end, we design a classification architecture consisting of two Convolutional Neural Network(CNN)-based models, namely main and small models, which were trained on radio signal datasets with two different signal sizes, respectively. Then, for a received signal input with an arbitrary length, modulation classification is performed by augmenting the input samples using a self-replicating padding technique to fit the input layer size of our model. Experiments using the RadioML 2018.01A dataset demonstrated that the proposed method provides higher accuracy than the existing methods in all signal-to-noise ratio(SNR) domains with less computation overhead.

Development of the Social Story Application Designed to Improve the Social Skills of Students with ASD (자폐성장애 학생의 사회적 기술 향상을 위한 상황이야기 애플리케이션 개발)

  • Kim, Sori;Kang, Ock-Ryeo
    • Journal of Creative Information Culture
    • /
    • v.5 no.3
    • /
    • pp.329-343
    • /
    • 2019
  • This study designed, developed and evaluated an application to improve the social skills of students with Autism Spectrum Disorders(ASD) based on the stage of the ADDIE model. The design stage aimed to factor in the characteristics and needs of students with ASD, and created guide maps and story boards accordingly. In the development stage, the application was made through a total of fourteen processes and four official tests. In the evaluation stage, heuristic usability evaluation was conducted on 10 teachers based on the their experience of using the application in the implementation stage. The results of the evaluation were all close to 'very good' in the areas of educational value, content implementation technology, content information and convenience. Finally, the application was fully developed after reflecting the corrections in accordance with the result of the usability evaluation. It is expected that this study have a role in invigorating the development of special educational software content.

FRF Analysis of a Vehicle Passing the Bump Barrier (둔턱 진행 차량의 주파수응답 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2022
  • The purpose of this study was to investigate the frequency characteristics of forced vibration considering the vehicle progress. And the vibration characteristics in frequency domain that occur, when vehicle passes the bump, were analyzed. The responses such as displacement, velocity and acceleration were obtained through numerical analysis, and FFT processing was performed to analyze the frequency response function(FRF) characteristics. In particular, the location of vehicle eigenmodes and external excitation modes was clearly shown and analyzed. In the forced vibration model by external force, the behavior of the eigenmode in power spectrum and real and imaginary parts were also analyzed. The mode characteristics were also analyzed in each FRF. It was approximated by assuming total excitation force by considering the exciting frequency using impulse and sine wave forces, which can give the amplitude and frequencies. The response characteristics of forced oscillations having different mass, damping and stiffness have been systematically discussed.

Seismic damage assessment of a large concrete gravity dam

  • Lounis Guechari;Abdelghani Seghir;Ouassila Kada;Abdelhamid Becheur
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • In the present work, a new global damage index is proposed for the seismic performance and failure analysis of concrete gravity dams. Unlike the existing indices of concrete structures, this index doesn't need scaling with an ultimate or an upper value. For this purpose, the Beni-Haroun dam in north-eastern Algeria, is considered as a case study, for which an average seismic capacity curve is first evaluated by performing several incremental dynamic analyses. The seismic performance point of the dam is then determined using the N2 method, considering multiple modes and taking into account the stiffness degradation. The seismic demand is obtained from the design spectrum of the Algerian seismic regulations. A series of recorded and artificial accelerograms are used as dynamic loads to evaluate the nonlinear responses of the dam. The nonlinear behaviour of the concrete mass is modelled by using continuum damage mechanics, where material damage is represented by a scalar field damage variable. This modelling, which is suitable for cyclic loading, uses only a single damage parameter to describe the stiffness degradation of the concrete. The hydrodynamic and the sediment pressures are included in the analyses. The obtained results show that the proposed damage index faithfully describes the successive brittle failures of the dam which increase with increasing applied ground accelerations. It is found that minor damage can occur for ground accelerations less than 0.3 g, and complete failure can be caused by accelerations greater than 0.45 g.

Effects of Electroencephalogram Biofeedback on Emotion Regulation and Brain Homeostasis of Late Adolescents in the COVID-19 Pandemic

  • Park, Wanju;Cho, Mina;Park, Shinjeong
    • Journal of Korean Academy of Nursing
    • /
    • v.52 no.1
    • /
    • pp.36-51
    • /
    • 2022
  • Purpose: The purpose of this study was to examine the effects of electroencephalogram (EEG) biofeedback training for emotion regulation and brain homeostasis on anxiety about COVID-19 infection, impulsivity, anger rumination, meta-mood, and self-regulation ability of late adolescents in the prolonged COVID-19 pandemic situation. Methods: A non-equivalent control group pretest-posttest design was used. The participants included 55 late adolescents in the experimental and control groups. The variables were evaluated using quantitative EEG at pre-post time points in the experimental group. The experimental groups received 10 sessions using the three-band protocol for five weeks. The collected data were analyzed using the Shapiro-Wilk test, Wilcoxon rank sum test, Wilcoxon signed-rank test, t-test and paired t-test using the SAS 9.3 program. The collected EEG data used a frequency series power spectrum analysis method through fast Fourier transform. Results: Significant differences in emotion regulation between the two groups were observed in the anxiety about COVID-19 infection (W = 585.50, p = .002), mood repair of meta-mood (W = 889.50, p = .024), self-regulation ability (t = - 5.02, p < .001), self-regulation mode (t = - 4.74, p < .001), and volitional inhibition mode (t = - 2.61, p = .012). Neurofeedback training for brain homeostasis was effected on enhanced sensory-motor rhythm (S = 177.00, p < .001) and inhibited theta (S = - 166.00, p < .001). Conclusion: The results demonstrate the potential of EEG biofeedback training as an independent nursing intervention that can markedly improve anxiety, mood-repair, and self-regulation ability for emotional distress during the COVID-19 pandemic.