• Title/Summary/Keyword: Design Sensitivity Analysis(DSA)

Search Result 35, Processing Time 0.017 seconds

Influence of dynamic strain aging on material strength behavior of virgin and service-exposed Gr.91 Steel (신재 및 가동이력 Gr.91강의 재료강도 거동에 미치는 동적변형시효의 영향)

  • Ki-Ean Nam;Hyeong-Yeon Lee;Jae-Hyuk Eoh;Hyungmo Kim;Hyun-Uk Hong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.66-74
    • /
    • 2024
  • This study investigates the effects of temperatures and strain rates on the strength and ductility of Gr.91 (ASME Grade 91) steel which is widely being used as a heat-resistant material in Generation IV nuclear and super critical thermal power plants. The tensile behavior of modified 9Cr-1Mo (Gr.91) steel was studied for the three strain rates of 6.67×10-5/s, 6.67×10-4/s and 6.67×10-3/s over the temperature range from room temperature (RT) to 650℃. Experimental results showed that at specific combinations of temperatures (300~400℃) and strain rates, serrations appeared in the stress-strain curves. Concurrently, abnormal behaviors such as a plateau in yield strength and tensile strength, a minimum in ductility and negative strain rate sensitivity were observed. These phenomena were analyzed as significant characteristics of dynamic strain aging (DSA). Since this abnormal behavior in Gr.91 steel affects the material strength, it is judged that a correlation analysis between DSA and material strength should be crucial in the design and integrity evaluation of Gr. 91 steel pressure vessel and piping subjected to high-temperature loading.

Shape Design Optimization of Structure-Fluid Interaction Problems using NURBS Surfaces (NURBS 곡면을 이용한 구조-유체 연성문제의 형상 최적설계)

  • Jang, Hong-Lae;Kim, Min-Geun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.508-511
    • /
    • 2010
  • 본 논문에서는 정상상태 유체-구조 연성문제를 연속체 기반으로 정식화하고 유한요소법을 이용하여 완전 연성된 해를 구하였다. 대 변형을 고려하기 위하여 토탈 라그란지안 정식화를 사용하였으며 유체 및 구조의 비선형성이 고려되었다. 유체와 구조 영역의 형상을 NURBS 곡면을 이용하여 매개화하여 표현하였으며, 형상 최적화를 위해 효율적인 설계민감도 해석법인 애조인 기법을 이용하여 압력, 속도, 변위 등에 대한 설계민감도를 구하였다. 이를 이용하여 최소 컴플라이언스를 갖게 하는 구조물 내부의 유체영역의 설계 등의 수치예제를 통하여 개발된 방법론의 타당성을 확인하였다.

  • PDF

Isogeometric Shape Design Optimization of Structures under Stress Constraints (응력 제한조건을 갖는 구조물의 아이소-지오메트릭 형상 최적설계)

  • Ahn, Seung-Ho;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.275-281
    • /
    • 2010
  • In this paper, the design optimization of structures with stress constraints is performed using isogeometric shape optimization method. The stress constraints have an important role in design optimization problems since stress concentration could result in structural failure. To represent exact geometry in analysis, the isogeometric analysis method uses the same basis functions as used in the CAD geometry. The geometrically exact model can be used in both stress and design sensitivity analyses so that it can yield more precise optimal design than finite element one. Through numerical examples, the isogeometric approach turns out to be effective in shape optimization problems under stress constraints.

Reliability-Based Topology Optimization Using Performance Measure Approach (성능함수법을 이용한 신뢰성기반 위상 최적설계)

  • Ahn, Seung-Ho;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, a reliability-based design optimization is developed for the topology design of linear structures using a performance measure approach. Spatial domain is discretized using three dimensional Reissner-Mindlin plate elements and design variable is taken as the material property of each element. A continuum based adjoint variable method is employed for the efficient computation of sensitivity with respect to the design and random variables. The performance measure approach of RBDO is employed to evaluate the probabilistic constraints. The topology optimizationproblem is formulated to have probabilistic displacement constraints. The uncertainties such as material property and external loads are considered. Numerical examples show that the developed topology optimization method could effectively yield a reliable design, comparing with the other methods such as deterministic, safety factor, and worst case approaches.

Level Set Based Topological Shape Optimization Combined with Meshfree Method (레벨셋과 무요소법을 결합한 위상 및 형상 최적설계)

  • Ahn, Seung-Ho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Using the level set and the meshfree methods, we develop a topological shape optimization method applied to linear elasticity problems. Design gradients are computed using an efficient adjoint design sensitivity analysis(DSA) method. The boundaries are represented by an implicit moving boundary(IMB) embedded in the level set function obtainable from the "Hamilton-Jacobi type" equation with the "Up-wind scheme". Then, using the implicit function, explicit boundaries are generated to obtain the response and sensitivity of the structures. Global nodal shape function derived on a basis of the reproducing kernel(RK) method is employed to discretize the displacement field in the governing continuum equation. Thus, the material points can be located everywhere in the continuum domain, which enables to generate the explicit boundaries and leads to a precise design result. The developed method defines a Lagrangian functional for the constrained optimization. It minimizes the compliance, satisfying the constraint of allowable volume through the variations of boundary. During the optimization, the velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian functional. Compared with the conventional shape optimization method, the developed one can easily represent the topological shape variations.