• Title/Summary/Keyword: Design Prototyping

Search Result 431, Processing Time 0.025 seconds

Improving Student's Design Prototyping Skills using Interactive Prototyping Tool

  • Kim, Jongwan;Jeon, Jae-wook;Kim, Ki-yeon
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.75-78
    • /
    • 2021
  • This paper will explain the importance of using interactive prototyping tools in the HCI design process. The Future of HCI education project performed by ACM SIGCHI shows that students recognize that prototyping, especially paper prototyping and interactive prototyping, are both very important. Two widely-used prototyping tools in academy, Balsamiq and Oven, will be compared and rated by students according to their preferences. We choose the Balsamiq as our design tool because Oven can be designed on the web but applications cannot be designed directly on Mac or Windows. The Balsamiq tool will help you understand the task process of UI work and highlight the benefits of digital prototyping to test the execution of expected results in a fast fashion compared to high-level prototyping. We also present the outcome of this work through two case studies. In particular, the smart mirror project with voice recognition function shows the effectiveness of the proposed method as an example.

Prototyping-based Design Process Integrated with Digital-Twin: A Fundamental Study (디지털 트윈 개념을 적용한 프로토타이핑 기반 디자인 프로세스: 기초연구)

  • Kim, Jin-Wooung;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.51-61
    • /
    • 2019
  • In the general manufacturing sector, prototyping used to reduce the risks that can arise with new conceptual products. However, in AEC area, it does not mass-produce a building, so the prototype itself becomes a building. Therefore, it is challenging to have prototyping of the same scale as the real thing, and the prototyping process in architecture is very inefficient. The prototyping process in the design stage typically assumes making a scaled model, partial model, or digital model. However, it is difficult for these models to correspond to the actual building and the environment of time and space such as scale, material, environment, load, physical properties and deformation, corrosion, etc., unlike the actual building. When using the digital twin concept in the prototyping process, it is possible to measure performance from the design stage to the operation stage. The digital twin was found by a method for monitoring based on physical twins and real-time linkage in the operation stage. Therefore, if the digital twin concept is applied at the design stage, it is possible to predict performance using not only current performance but also history information using real-time information. In order to apply the digital twin concept to the prototyping design process, we analyze the theoretical considerations and the prototyping design process of the digital twin, analyze the cases and research results where the prototyping design was applied, Provide an applied prototyping design process. The proposed process is tested through a pilot project and analyzed for potential use.

Research of Application of Rapid Prototyping in Architectural Industry and Its Educational Status - With Focus on the Mid-size Firm and Graduate CAAD Education in U.S- (건축 산업에서의 신속조형기술 응용과 교육 연구 -미국의 중소규모 사무소와 대학원 CAAD 교육을 중심으로-)

  • Jung, C. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-91
    • /
    • 2004
  • Integrating computer-aided design with computer-aided fabrication and construction will fundamentally redefine the relationship between design and construction. Rapid prototyping(RP) is evaluated as one of the integration method available but it has been regarded as very expensive and complex design evaluation tool and is only suitable for large mechanical design shops in automobile and aerospace industry. However current status of rapid prototyping is changing since the new generation of RP equipment, less expensive and more user-friendlier, now can be installed and use in design firms. Simultaneously increasing use of 3D CAAD software is also helping to use rapid prototyping widely. It is crucial to acknowledge rapid prototyping technologies are not only for avant-garde architect such as Frank O. Gehry but ordinary 90% architects, who can have benefit from fast and cost-effective technology. With its fast development and adaptation in architectural industry, it is quite necessary to include rapid prototyping education in regular CAAD courses either undergraduate or graduate level.

Survey of Prototyping Tools for Interactive Product Design (인터랙티브 제품 디자인을 위한 프로토타이핑 도구 조사)

  • Nam, Tek-jin;Yim, Ji-Dong
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.165-174
    • /
    • 2005
  • The development of digital technologies transforms the design targets, characteristics of the targets and the role of designers. The paper highlights the role of prototyping in the interactive digital product design process and presents the survey and analysis of prototyping tools that can be used by designers in designing such products. From the review of tools in design related fields. the classification framework for the tools were presented. The framework has the criteria of the fidelity of prototypes, the stage when the prototyping is used, and design targets. Based on the analysis, the implications for using the tools are suggested. They includes that prototyping is important in the concept stage for designers and different tools and methods are to be applied according to design targets and objectives. Prototyping tools need to support exploring design concepts without being constrained by implementation technologies The collaboration with other professionals can also help effective prototyping. Existing tools familiar to designers can be effective platforms for the new design problems. The results can be guidlines with which designers choose more appropriate prototyping tools when they face new design problems. It also make practical contribution in improving design efficiency and design education for interactive product design projects.

  • PDF

Embedded System Integrated Prototyping Mechanism Based on Reusable Component (재사용 가능한 컴포넌트 기반의 임베디드 시스템 통합 프로토타이핑 기법)

  • Sukmana, Husni Teja;Lee, Jeong-Bae;Rim, Kee-Wook;Hwang, Young-Sup;Kim, Young-Jin;Ahn, Sung-Soon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.3
    • /
    • pp.199-208
    • /
    • 2009
  • Recently, there are many embedded system prototyping tools for helping embedded system designers to trial their product before it releases to the market. A prototype is very important for early embedded system design to grasp the desire functions, to get a good performance, to create delightful user interface, and to increase the valuable of the product. Prototyping tools can be classified by three categories: Physical, Virtual and Modeling prototyping. The integration of these prototyping tools becomes valuable for speed up time-to-market and for decrease design cost when design embedded system. The problem comes up because these tools sometime do not provide an instrument for communicating each other. In this paper, we propose a flexible and reusable mechanism for integrate these tools base on JavaBeans and ActiveX technology. We show how this mechanism can be employed in various prototyping tools.

A Prototyping Tool of Free-Coding-Type Microcontroller Board for Design Education

  • Nam, Wonsuk
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.129-141
    • /
    • 2018
  • As the scope of social expectations and roles in the design field has expanded, the demand for education to cope with changes in the technology environment is increasing in design education. In response to this trend, microcontroller board-type design-prototyping tools have also been introduced into design education, and much educational content is being developed. However, there is the perception that students who are majoring in design without engineering knowledge are still barred from entry. A variety of educational content and tools have been developed to solve these difficulties, although there are several limitations to their practical application. Especially, in the design education courses in universities, the functional expectation level for prototyping is high, but most of the content developed for solving the difficulties has been developed for the lower education levels, and it could be said that a great deal of learning is necessary to solve the problem. In this study, students were asked about microcontroller board utilization and their satisfaction with their design through questionnaires and with the developed microcontroller board development direction via Focus Group Interviews. Based on this, we tested microcontroller boards that eliminate the coding process and which students can use to create and prototype their work as a suggestion to fulfil demand. After using the board, both the usability and improvement of the product were checked. Confirmation of the usefulness of the free- coding-type microcontroller was obtained through this study along with the possibility of responding to various educational demands by applying the application design related to this product.

Educational Framework for Interactive Product Prototyping

  • Nam Tek-Jin
    • Archives of design research
    • /
    • v.19 no.3 s.65
    • /
    • pp.93-104
    • /
    • 2006
  • When the design profession started, design targets were mainly static hardware centered products. Due to the development of network and digital technologies, new products with dynamic and software-hardware hybrid interactive characteristics have become one of the main design targets. To accomplish the new projects, designers are required to learn new methods, tools and theories in addition to the traditional design expertise of visual language. One of the most important tools for the change is effective and rapid prototyping. There have been few researches on educational framework for interactive product or system prototyping to date. This paper presents a new model of educational contents and methods for interactive digital product prototyping, and it's application in a design curricula. The new course contents, integrated with related topics such as physical computing and tangible user interface, include microprocessor programming, digital analogue input and output, multimedia authoring and programming language, sensors, communication with other external devices, computer vision, and movement control using motors. The final project of the course was accomplished by integrating all the exercises. Our educational experience showed that design students with little engineering background could learn various interactive digital technologies and its' implementation method in one semester course. At the end of the course, most of the students were able to construct prototypes that illustrate interactive digital product concepts. It was found that training for logical and analytical thinking is necessary in design education. The paper highlights the emerging contents in design education to cope with the new design paradigm. It also suggests an alterative to reflect the new requirements focused on interactive product or system design projects. The tools and methods suggested can also be beneficial to students, educators, and designers working in digital industries.

  • PDF

A Study on the Meaning of Prototypes and Prototyping Strategy in User Interface Design (사용자 인터페이스 디자인에서 프로토타입의 의미와 프로토타이핑 전략에 대한 연구)

  • 박정순
    • Archives of design research
    • /
    • v.13 no.3
    • /
    • pp.145-152
    • /
    • 2000
  • Since interactive systems that the user interaction is important factor can be very complex, its design process may have various testing and feedback based on continuous prototyping. The prototypes in this process function as medium to explore design problem and communicate opinions with another expert of project team. So prototyping strategy may be needed to enhance the design quality by focusing on the goals of project. This study clarifies critical issues around the prototypes and characteristics of interactive system to understand broad meaning of prototypes. And prototype model proposes as a framework for establishment of prototyping stategy.

  • PDF