• 제목/요약/키워드: Design Procedure

Search Result 5,174, Processing Time 0.037 seconds

Comparison of Rigorous Design Procedure with Approximate Design Procedure for Variable Sampling Plans Indexed by Quality Loss

  • Ishii, Yoma;Arizono, Ikuo;Tomohiro, Ryosuke;Takemoto, Yasuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.231-238
    • /
    • 2016
  • Traditional acceptance sampling plans have focused on the proportion of nonconforming items as an attribute criterion for quality. In today's modern quality management under high quality production environments, the reduction of the deviation from a target value in a quality characteristic has become the most important purpose. In consequence, various inspection plans for the purpose of reducing the deviation from the target value in the quality characteristic have been investigated. In this case, a concept of the quality loss evaluated by the deviation from the target value has been accepted as the variable evaluation criterion of quality. Further, some quality measures based on the quality loss have been devised; e.g. the process loss and the process capability index. Then, as one of inspection plans based on the quality loss, the rigorous design procedure for the variable sampling plan having desired operating characteristics (VS-OC plan) indexed by the quality loss has been proposed by Yen and Chang in 2009. By the way, since the estimator of the quality loss obeys the non-central chi-square distribution, the rigorous design procedure for the VS-OC plan indexed by the quality loss is complicated. In particular, the rigorous design procedure for the VS-OC plan requires a large number of the repetitive and complicated numerical calculation about the non-central chi-square distribution. On the other hand, an approximate design procedure for the VS-OC plan has been proposed before the proposal of the above rigorous design procedure. The approximate design procedure for the VS-OC plan has been constructed by combining Patnaik approximation relating the non-central chi-square distribution to the central chi-square distribution and Wilson-Hilferty approximation relating the central chi-square distribution to the standard normal distribution. Then, the approximate design procedure has been devised as a convenient procedure without complicated and repetitive numerical calculations. In this study, through some comparisons between the rigorous and approximate design procedures, the applicability of the approximate design procedure has been confirmed.

Improvement of Shear Connection Design Procedure using Connections Standardization Database (접합부 표준화 데이터베이스를 활용한 전단접합 설계 프로세스 개선)

  • Kim, Hee Dong;Hwang, In Kyu;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • Investigation results on shear connections design procedure which is conducted in Korea show that there are many communication problems between structural engineer and detailer, and there are unnecessary work procedures. To solve conventional connection design procedure problems, improved shear connection design procedure is suggested. Most of suggested design procedure is controlled by structure engineer, and the introduction of connections standardization makes computer aided design possible. Standardized connection details are satisfied with structural safety and constructability, and it improves design efficiency. Many problems which are caused by conventional design procedure are fundamentally blocked by using suggested design procedure.

Standard Procedure for the Aerodynamic Design of Small Wind Turbine Blades (소형 풍력 블레이드 공력 설계를 위한 표준 절차 구축)

  • Chang, Se-Myong;Jeong, Su-Yun;Seo, Hyun-Soo;Kyong, Nam-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.473-473
    • /
    • 2009
  • There have been many academic researches on the aerodynamic design of wind turbine based on blade element method (BEM) and momentum theory (MT, or actuating disk theory). However, in the real world, the turbine blade design requires many additional constraints more than theoretical analysis. The standard procedure is studied in the present paper to design new blades for the wind turbine system ranged from the small size from 1 to 10 kW. From the experience of full design of a 10 kW blade, the authors tried to set up a standard procedure for the aerodynamic design based on IEC 61400-2. Wind-turbine scale, rotating speed, and geometrical chord/twist distribution at the segmented span positions are calculated with a suitable BEM/MT code, and the geometrical shape of tip and root should be modified after considering various parameters: wing-tip vortex, aerodynamic noise, turbine efficiency, structural safety, convenience of fabrication, and even economic factor likes price, etc. The evaluated data is passed to the next procedure of structural design, but some of them should still be corresponded with each other: the fluid-structure interaction is one of those problems not yet solved, for example. Consequently, the design procedure of small wind-turbine blades is set up for the mass production of commercial products in this research.

  • PDF

Design of Korean Precast Slab Track (한국형 프리캐스트 슬래브 궤도 설계)

  • Zi, Goang-Seup;Lee, Seung-Jung;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1423-1429
    • /
    • 2010
  • We proposed a design procedure for Korean Precast Slab Track system. Korean Precast Slab Track system cannot use the same design procedure to German slab track system because of different shapes and some problems. We identified the problems of German slab track design system that cannot simulate effects of loads. This proposed procedure is implemented for the commercial software of ABAQUS. Using this procedure, one can consider uncombined effects between slab panel and hydraulic sub base, effect of close sleepers.

  • PDF

Design of Single-Phase Line-Start Permanent Magnet Motor Using Equivalent Circuit Method

  • Kwon, Sun-Hyo;Lee, Chul-Kyu;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.490-495
    • /
    • 2006
  • In this research, the design procedure and the design method of a single-phase line-start permanent magnet motor (LSPM) are proposed. In the design procedure, the permanent magnet is designed first and the windings and capacitors are designed later. As well, the points of design of each design parameter are explained. In the design of the single-phase LSPM, the equivalent circuit method is combined with the finite element method (FEM) because it has a shorter analysis time than FEM. The 400 watts single-phase LSPM is designed and manufactured. The characteristics of the manufactured single-phase LSPM are analyzed and experimented. From the analysis result and the experiment result, it is verified that the design procedure and the design method of the single-phase LSPM is valid.

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 충지진하중)

  • 이동근;이석용;신용우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.73-78
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used for its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumption that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode. Therefore proper prediction of dynamic responses of the structure is unreliable using the equivalent lateral force procedure when the effect of higher vibration modes on the dynamic behavior is negligible. In this study design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum are examined. From these results improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes is proposed.

  • PDF

Design Optimization of Transonic Airfoils Based on the Navier-Stokes Equation (Navier-Stokes 방정식을 이용한 천음속 익형의 설계최적화 연구)

  • Lee Hyeong Min;Jo Chang Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.177-185
    • /
    • 1999
  • The airfoil design optimization procedures based on the Navier-Stokes equations were developed, This procedure enables more realistic and practical transonic airfoil designs. The modified Hicks-Henne functions were used to generate the shape of airfoils. Five Hick-Henne functions were used to design upper surface of airfoil only. To enhance the ability of Hick-Henne function to generate various airfoil shape with limited number of functions, the positions of control points were adjusted through optimization procedure. The design procedure was applied to the single-point design for the drag minimization problem with lift and area constraints. The result shows the capability of the procedure to generate much realistic airfoils with very small drag-creep in the low transonic regime. This is mainly due to the viscosity effect of Navier-Stokes flow analysis. However, in the higher transonic range tile drag-creep appears. The multi-point design is shown to be an effective way to avoid the drag-creep and improve off-design performance which is very similar in the Euler design.

  • PDF

A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates

  • Wang, L.;Su, R.K.L.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.163-185
    • /
    • 2013
  • The use of post-compressed plates (PCP) to strengthen preloaded reinforced concrete (RC) columns is an innovative approach for alleviating the effects of stress-lagging between the original column and the additional steel plates. Experimental and theoretical studies on PCP-strengthened RC columns have been presented in our companion papers. The results have demonstrated the effectiveness of this technique for improving the strength, deformability and ductility of preloaded RC columns when subjected to axial or eccentric compression loading. An original and comprehensive design procedure is presented in this paper to aid engineers in designing this new type of PCP-strengthened RC column and to ensure proper strengthening details for desirable performance. The proposed design procedure consists of five parts: (1) the estimation of the ultimate load capacity of the strengthened column, (2) the design of the initial pre-camber displacement of the steel plate, (3) the design of the vertical spacing of the bolts, (4) the design of the bearing ends of the steel plates, and (5) the calculation of the tightening force of the bolts. A worked example of the design of a PCP-strengthened RC column is shown to demonstrate the application of the proposed design procedure.

Conceptual system design of multistage centrifugal air-compressor (다단 원심압축기의 개념설계)

  • Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1086-1093
    • /
    • 1997
  • Conceptual system design of a multistage centrifugal air-compressor is the first loop of design procedure. The properly designed system is important for compactness, low manufacturing cost, easy controllability, fast extension for the new specification of the compressor. A simple procedure of conceptual system design is proposed in the present study using simple analysis. A few examples of the procedure for a real system are shown and several design aspects are discussed.

Hydraulic Design Procedure for Regenerative Flow Pumps (재생형 펌프의 수력학적 설계)

  • Yoo, Il-Su;Park, Mu-Ryong;Chung, Myoung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.16-23
    • /
    • 2006
  • The present study aims at establishing the design procedure of regenerative pumps. It is based on the new momentum exchange theory proposed in Yoo, Park and Chung. Salient feature of the present design procedure is that it does not require input of any kinds of empirical design data. Using the design procedure, a prototype regenerative pump has been designed and manufactured to confirm its validity. Comparison between the predicted performance and the experimental measurement reveals that the prototype pump has its maximum efficiency at the design flow rate and that the proposed performance analysis method satisfactorily predicts the machine performance.