• Title/Summary/Keyword: Design Optimization Tool

Search Result 534, Processing Time 0.021 seconds

A Study on the Precision Milling Machine Design for Micro Machining (미소가공을 위한 초정밀 밀링머신 설계에 관한 연구)

  • Hwang, Joon;Ji, Kwon-Gu;Chung, Eui-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the results of miniaturized micro milling machine tool development for micro precision machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Design optimization has been performed to optimize the design variables of micro machine tool to minimize the volume, weight and deformation of machine tool structure and to maximize the stiffness in terms of static, dynamic, and thermal characteristics. This study presents the assessment of the technology incentive for the minimization of machine tool in the quantitative context of static, dynamic stiffness, thermal resistance and thus the accuracy implications. This study can also be provided a basic knowledge for further research of micro factory development.

  • PDF

Weighting objectives strategy in multicriterion fuzzy mechanical and structural optimization

  • Shih, C.J.;Yu, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.373-382
    • /
    • 1995
  • The weighting strategy has received a great attention and has been widely applied to multicriterion optimization. This gaper examines a global criterion method (GCM) with the weighting objectives strategy in fuzzy structural engineering problems. Fuzziness of those problems are in their design goals, constraints and variables. Most of the constraints are originated from analysis of engineering mechanics. The GCM is verified to be equivalent to fuzzy goal programming via a truss design. Continued and mixed discrete variable spaces are presented and examined using a fuzzy global criterion method (FGCM). In the design process a weighting parameter with fuzzy information is introduced into the design and decision making. We use a uniform machine-tool spindle as an illustrative example in continuous design space. Fuzzy multicriterion optimization in mixed design space is illustrated by the design of mechanical spring stacks. Results show that weighting strategy in FGCM can generate both the best compromise solution and a set of Pareto solutions in fuzzy environment. Weighting technique with fuzziness provides a more relaxed design domain, which increases the satisfying degree of a compromise solution or improves the final design.

Conceptual Design of Fighter-class Aircraft Using Integrated Commercial Tools (통합된 상용 툴을 이용한 전투기급 항공기 개념설계)

  • Lee, Sung-Jin;Nam, Hwa Jin;Park, Young Keun;O, Jangwhan;Lee, Dae Yearl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.189-196
    • /
    • 2014
  • Automated design program using commercial process integration and optimization program was developed for conceptual design of fighter-class aircraft. Wind tunnel test data and performance analysis results were compared for the verification of analysis tool of this program, and the usefulness of the tool was found. After integration with radar cross section analysis tool, the correlation with configuration design variables of wing, tail and performance parameters was identified by design of experiment, and the optimized configuration for weight and RCS was derived from optimization of empty weight and average frontal RCS value. After parameter definition of fuselage, the program can be implemented for full aircraft configuration.

Topology Optimization using an Optimality Criteria Method (최적조건법에 의한 위상 최적화 연구)

  • 김병수;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.224-232
    • /
    • 1999
  • Topology optimization has evolved into a very efficient concept design tool and has been incorporated into design engineering processes in many industrial sectors. In recent years, topology optimization has become the focus of structural design community and has been researched and applied widely both in academia and industry. There are mainly tow approaches for topology optimization of continuum structures ; homogenization and density methods. The homogenization method is to compute is to compute an optimal distribution of microstructures in a given design domain. The sizes of the micro-calvities are treated as design variables for the topology optimization problem. the density method is to compute an optimal distribution of an isotropic material, where the material densities are treated as design variables. In this paper, the density method is used to formulate the topology optimization problem. This optimization problem is solved by using an optimality criteria method. Several example problems are solved to show the usefulness of the present approach.

  • PDF

Visualization Tool Design for Searching Process of Particle Swarm Optimization (Particle Swarm Optimization 탐색과정의 가시화를 위한 툴 설계)

  • 유명련
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.332-339
    • /
    • 2003
  • To solve the large scale optimization problem approximately, various approaches have been introduced. Recently the Particle Swarm Optimization has been introduced. The Particle Swarm Optimization simulates the process of birds flocking or fish schooling for food, as with the information of each agent is skated by other agents. The Particle Swarm Optimization technique has been applied to various optimization problems whose variables are continuous. However, there are seldom trials for visualization of searching process. This paper proposes a new visualization tool for searching process of Particle Swarm Optimization algorithm. The proposed tool is effective for understanding the searching process of Particle Swarm Optimization method and educational for students. The computational results can be shown tiny and very helpful for education.

  • PDF

Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Vibrations (마이크로 밀링 머신의 저진동.경량화를 위한 구조 최적설계)

  • Jang, Sung-Hyun;Kwon, Bong-Chul;Choi, Young-Hyu;Park, Jong-Kweon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • This paper presents structural design optimization of a micro milling machine for minimum weight and compliance using a genetic algorithm with dynamic penalty function. The optimization procedure consists of two design stages, which are the static and dynamic design optimization stages. The design problem, in this study, is to find out thickness of structural members which minimize the weight, the static compliance and the dynamic compliance of the micro milling machine under several constraints such as dimensional constraints, maximum compliance limit, and safety factor criterion. Optimization results showed a great reduction in the static and dynamic compliances at the spindle nose of the micro milling machine in spite of a little decrease in the machine weight.

The Displacement Minimization of the tool Center Point by the Crossrail Structure Improvement of the Portal Machine (공구 중심점의 변위 최소화를 위한 문형 공작기계의 크로스레일 개선 연구)

  • Lee, Myung-Gyu;Song, Ki-Hyeong;Choi, Hag-Bong;Lee, Dong-Yoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.310-315
    • /
    • 2011
  • General portal machine represents a distinct weak spot concerning their structural behavior because of long protruding structure components, such as saddles and rams. The weak point causes the deformation of the machine tool and consequently rises a severe machining error. The purpose of this study is to improve the structural design of crossrail in order to minimize it's distortion. Tool Center Point (TCP) was chosen as a reference point for evaluating the distortion effect of a crossrail and topological optimization was adopted as a method of structural design improvement. The displacements of TCP according to the machining positions were investigated by structural analyses for both of original crossrail design and the improved one. The comparing results showed that the displacement of TCP could be reduced about 55% maximum.

Contour Parallel Tool-Path Linking Algorithm For Pocketing (포켓가공을 위한 오프셋 공구경로 연결 알고리즘)

  • 박상철;정연찬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.3
    • /
    • pp.169-173
    • /
    • 2001
  • Presented in this paper is a CPO tool-path linking procedure optimizing technological objectives, such as dealing with islands (positive and negative) and minimizing tool retractions, drilling holes and slotting. Main features of the proposed algorithm are as follows; 1) a data structure, called a 'TPE-net', is devised to provide information on the parent/child relationships among the tool-path-elements, 2) the number of tool retractions is minimized by a 'tool-path-element linking algorithm'fading a tour through the TPE-net, and 3) the number of drilling holes is minimized by making use of the concept of the 'free space'.

  • PDF

Development of a Multi-Tasking Machine Tool for Machining Large Scale Marine Engine Crankshafts and Its Design Technologies (대형 선박엔진 크랭크샤프트 가공용 복합가공기 기술 개발)

  • An, Ho-Sang;Cho, Yong-Joo;Choi, Young-Hyu;Lee, Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2012
  • A multi-tasking machine tool for large scale marine engine crankshafts has been developed together with design technologies for its special devices. Since work pieces, that is, crankshafts to be machined are big and heavy; weight of over 100 tons, length of 10 m long, and diameter of over 3.5 m, several special purpose core devices are necessarily developed such as PTD (Pin Turning Device) for machining eccentric pin parts, face place and steady rest for chucking and resting heavy work pieces. PTD is a unique special purpose device of open-and-close ring typed structure equipped with revolving ring spindle for machining eccentric pins apart from journal. In order to achieve high rigidity of the machine tool, structural design optimization using TMSA (Taguch Method based Sequential Algorithm) has been completed with FEM structural analysis, and a hydrostatic bearing system for the PTD has been developed with theoretical hydrostatic analysis.

Multi-objective Optimization of an Injection Mold Cooling Circuit for Uniform Cooling (사출금형의 균일 냉각을 위한 냉각회로의 다중목적함수 최적설계)

  • Park, Chang-Hyun;Park, Jung-Min;Choi, Jae-Hyuk;Rhee, Byung-Ohk;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.124-130
    • /
    • 2012
  • An injection mold cooling circuit for an automotive front bumper was optimally designed in order to simultaneously minimize the average of the standard deviations of the temperature and the difference in mean temperatures of the upper and lower molds for uniform cooling. The temperature distribution for a specified design was evaluated by Moldflow Insight 2010, a commercial injection molding analysis tool. For efficient design, PIAnO (Process Integration, Automation and Optimization), a commercial PIDO tool, was used to integrate and automate injection molding analysis procedure. The weighted-sum method was used to handle the multi-objective optimization problem and PQRSM, a function-based sequential approximate optimizer equipped in PIAnO, to handle numerically noisy responses with respect to the variation of design variables. The optimal average of the standard deviations and difference in mean temperatures were found to be reduced by 9.2% and 56.52%, respectively, compared to the initial ones.