• Title/Summary/Keyword: Design Limit Load

Search Result 461, Processing Time 0.026 seconds

A Study on Shear Strength Test for FRP Girder of Filled Concrete (콘크리트 충진 FRP 거더의 전단재하 실험에 관한 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-Ok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2008
  • Fiber Reinforced Polymer, FRP has a light weight, a high tensile strength based on design, non-electronic, non-magnetic, and rust-resistant feature, etc and many researches are being conducted recently on FRP in the construction area. Among them, GFRP (Glass Fiber Reinforced Polymer) is excellent in price competitiveness and is widely being used. However, since GFRP has a relative low modulus of elasticity and causes excessive deflection, the section must be large to be used as a structural component and an investigative review must be carried out in design to set the limit for deflection by the use load. Therefore, in order to solve the mentioned technical problems, this study suggested a section of a module form such that application of a large-scale section is possible. Also, to secure the low rigidity of FRP, this study developed a new FRP+ concrete composite girder form that confined the concrete. To identify the structural movement of the developed FRP+ concrete composite girder, shear strength test was carried out.

Lifetime Estimation of an Axle Drive Shaft by Calibrated Accelerated Life Test Method (CALT 방법을 이용한 액슬구동축의 수명 예측)

  • Kim, Do-Sik;Kim, Hyoung-Eui;Yoon, Sung-Han;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.273-281
    • /
    • 2010
  • In this paper, a method to predict the fatigue life of an axle drive shaft by the calibrated accelerated life test (CALT) method is proposed. The CALT method is very effective for predicting lifetimes, significantly reducing test time, and quantifying reliability. The fatigue test is performed by considering two high stress and one low stress levels, and the lifetime at the normal stress level is predicted by extrapolation. In addition, in this study, the major reliability parameters such as the lifetime, accelerated power index, shape parameter, and scale parameter are determined by conducting various experiments. The lifetime prediction of the axle drive shaft is verified by comparing the experimental results with load spectrum data. The results confirm that the CALT method is effective for lifetime prediction and requires a short test time.

Seismic Performance Evaluation of a School Gymnasium Using Static Anlysis (정적해석에 의한 학교 체육관의 내진 성능 평가)

  • Morooka, Shigehiro;Tsuda, Seita;Ohsaki, Makoto
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.49-59
    • /
    • 2009
  • The seismic responses of small-scale spatial frames such as school gymnasiums are usually evaluated using static analysis, although time-history analysis should be carried out to fully incorporate the dynamic responses of the structures against seismic motions. In this study, advanced static analysis procedures arc presented for school gymnasiums that will improve the performance evaluation against seismic motions. The seismic loads are approximated by equivalent static loads corresponding to the two performance levels; i.e., Levels 1 and 2 defined by the Japanese building standard. The importance of utilizing the eigenmode in the load pattern is discussed. Simple static analysis procedures are presented for evaluation of maximum vertical acceleration. It is shown that the static analysis for Level 2 input significantly underestimates the responses by dynamic analysis; however, the inelastic responses for Level 2 are shown to be successfully evaluated using the equivalent linearization that is similar to the $^{\circ}$Dmethod based on calculation of limit strength$^{\circ}{\pm}$ for building frames in Japan.

  • PDF

Shear Behavior of Post-tensioning PSC Beams with High Strength Shear Reinforcement (고강도 전단보강철근을 사용한 포스트텐션 프리스트레스트 콘크리트 보의 전단거동 평가)

  • Jun, Byung-Koo;Lee, Jea-Man;Lim, Hye-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • The KCI-12 and ACI 318-14 design codes limit the maximum yield strength of shear reinforcement to prevent concrete compressive crushing before the yielding of shear reinforcement. The maximum yield strength of shear reinforcement is limited to 420 MPa in the ACI 318-14 design code, while limited to 500 MPa in the KCI-12 design code. A total of eight post-tensioning prestressed concrete beams with high strength shear reinforcement were tested to observe the shear behavior of PSC beams and the applicability of the high strength reinforcement was thus assessed. In the all PSC beam specimens that used stirrups greater than maximum yield strength of shear reinforcement required by the ACI 318-14 design code, the shear reinforcement reached their yield strains. The observed shear strength of tested eight PSC beams was greater than the calculated ones by the KCI-12 design codes. In addition, the diagonal crack width of all specimens at the service load was smaller than the crack width required by the ACI 224 committee. The experimental and analytical results indicate that the limitation on the yield strength of shear reinforcement in the ACI 318-14 design code is somewhat under-estimated and needs to be increased for high strength concrete. Also the application of high strength materials to PSC is available with respect to strength and serviceability.

Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio (그라우트 주입율 변화에 따른 사질토의 동적계수 특성)

  • Ahn, Kwangkuk;Park, Junyoung;Oh, Jonggeun;Lee, Jundae;Han, Kihwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • Ground dynamic parameter such as shear elastic modulus and damping ratio is a very important variable in design of ground-structure with repeated load and dynamic load. Shear elastic modulus and damping ratio on small strain below linear limit strain is constant regardless of strain. Shear elastic modulus as the maximum shear elastic modulus and damping ratio as the minimum damping ratio were considered. As a lot of experiment related to the maximum shear elastic modulus, which is in dynamic deformation characteristics, have been conducted, many factors including voiding ratio, over consolidation ratio(OCR), confining pressure, geology time, PI, and the number of load cycle affect to dynamic soil characteristic. However, the research of ground dynamic characteristic improved with grout is absent such as underground continuous wall construction, deep mixing method, umbrella arch method. In order to investigate the dynamic soil characteristics improved with grout, in this study, resonant column tests were performed with changing water content(20%, 25%, 30%) and injection ratio of grout(5%, 10%, 15%), cure time(7th day, 28th day) As a result, shear elastic modulus and damping ratio, which are ground dynamic parameter, are affected by the injection ratio of milk grout, cure time and water content.

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.

Evaluation of Pull-out Performance of Torsion Control Expansion Anchor According to Drill Bit Diameter (드릴비트 직경에 따른 비틀림 제어 확장 앵커의 인발성능 평가)

  • Kyoung-Hun Chae;Tae-Wo Park;Moo-Won Hur;Yeong-Seung An;Ju-Yeon Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.64-70
    • /
    • 2023
  • In this study, reliability tests of torsion control expansion anchors according to drill bit diameters were performed. The standard deviation and coefficient of variation of the anchor were reviewed through the tests for each variable, and the results were compared and evaluated with the standard test results. As a result of the reliability test of the M12 and M16 anchors with 1.04 times the drill bit diameter, they were within 20% of the ultimate tensile load permissible standard coefficient of variation. It was found that the pulling-out performance of the anchor installed in the large hole was sufficiently secured. However, it was found to be about 253% and 210% of the design strength, indicating that the pulling performance of the anchor installed in 1.04 times the drill bit diameter was sufficiently secured. As a result of the reliability test of the M12 and M16 anchors with 1.02 times the drill bit diameter, the value of the coefficient of variation of the ultimate tensile load limit was within 20%, which satisfies the test standard. It was shown to be about 136% and 168% of the design strength, indicating that the pulling-out performance of the anchor installed in 1.02 times the drill bit diameter is sufficiently secured.

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.

Evaluation of Marginal and Internal Integrity of Modified Resin-Bonded Fixed Partial Dentures: An In Vitro Study

  • Ahn, Sung-Hyeon;Choi, Jae-Won;Jeon, Yong-Chan;Jeong, Chang-Mo;Yoon, Mi-Jung;Lee, So-Hyoun;Huh, Jung-Bo
    • Journal of Korean Dental Science
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate the microleakage of various types of resin-bonded fixed partial dentures (RBFPDs) after artificial aging. Materials and Methods: Forty models with missing first molar were fabricated using artificial resin teeth and were divided into four groups: Group A, conventional RBFPDs design; Group B, modified RBFPDs design; Group C, assembled 3-piece RBFPDs design; and Group D, assembled 3-piece RBFPDs with different occlusal rest positions. Half of the specimens underwent chewing simulation process (240,000 cycles, 50 N load, 1.7 Hz) and thermocycling (temperatures $5^{\circ}C{\sim}55^{\circ}C$, dwelling time 30 seconds) and the remaining 20 specimens didn't receive any treatment. All the specimens were immersed in 2% methylene blue solution for 24 hours to evaluate microleakage, and were sectioned at the middle part of abutment teeth. To evaluate the microleaskage, a dye penetration was calculated. Result: With artificial aging, cyclic loading and thermocycling, a 3-piece RBPFD and a 2-piece RBPFD using original tooth undercuts have significantly lower microleakge (P<0.05) compared to the conventional design of RBPFD and modified RBPFD. Conclusion: Within the limit of this experiment, the assembled RBFPDs exhibited a smaller microleakage than the conventional RBFPDs, implying that the assembled RBFPDs can be more effective for reducing the dislodgement of the RBFPDs.

Nitrogen and Phosphorus Removal Characteristics of a New Biological Nutrient Removal Process with Pre-Denitrification by Pilot Scale and Computer Simulation Program (선단무산소조를 이용한 영양소제거공정(Bio-NET)의 질소·인 제거 특성)

  • Oh, Young-Khee;Oh, Sung-Min;Hwang, Yenug-Sang;Lee, Kung-Soo;Park, No-Yeon;Ko, Kwang-Baik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.121-132
    • /
    • 2000
  • This study is to investigate the performance of a new BNR process using predenitrification scheme focusing on nitrogen removal and the possibility of adapting a computer simulation scheme in BNR process development. By using a pre-denitrification basin, higher $COD/NO_3-N$ ratio could be sustained in this BNR process. The results of the investigation showed a SDNR value of 9.04mg/gMv/hr. In the anoxic tank, the average value of SPRR of 6.25mgP/gMv/hr was observed to be very sensitive to SCOD load of influents. By calibrating internal parameters (stoichiometric and kinetic parameters) of the simulation model, the results of simulation for various BNR processes gave good agreement with observed data. The major adjustment was given with three parameters, maximum specific growth rate of heterotrophic biomass, short chain fatty acid (SCFA) limit, and phosphorous release rate. With the series of simulations on varying operational conditions, the simulation by computer program can be a useful tool for process selection, and design and operation of municipal wastewater treatment plant.

  • PDF