• Title/Summary/Keyword: Design Generator

Search Result 2,019, Processing Time 0.029 seconds

A Novel High Speed Frequency Sweeping Signal Generator in X-band Based on Tunable Optoelectronic Oscillator

  • Sun, Mingming;Chen, Han;Sun, Xiaohan
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2018
  • A novel X-band high speed frequency sweep signal generator based on a tunable optoelectronic oscillator (OEO) incorporating a frequency-swept laser is presented and the theoretical fundamentals of the design are explained. A prototype of the generator with tuning range from 8.8552 GHz to 10.3992 GHz and a fine step about 8 MHz is achieved. The generated radiofrequency signal with a single sideband (SSB) phase noise lower than -100 dBc/Hz@10KHz is experimentally demonstrated within the whole tunable range, without any narrow RF band-pass filters in the loop. And the tuning speed of the frequency sweep signal generator can reach to over 1 GHz/s benefiting from applying a novel dispersion compensation modular instead of several tens of kilometers of optical fiber delay line in the system.

A Construction of the Multiplier and Inverse Element Generator over $GF(3^m)$ ($GF(3^m)$ 상의 승산기 및 역원생성기 구성)

  • 박춘명;김태한;김흥수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.747-755
    • /
    • 1990
  • In this paper, we presented a method of constructing a multiplier and an inverse element generator over finite field GF(3**m). We proposed the multiplication method using a descending order arithmetics of mod F(X) to perform the multiplication and mod F(X) arithmetics at the same time. The proposed multiplier is composed of following parts. 1) multiplication part, 2) data assortment generation part and 5) multiplication processing part. Also the inverse element generator is constructed with following parts. 1) multiplier, 2) group of output registers Rs, 3) multiplication and cube selection gate Gl, 4) Ri term sequential selection part. 5) cube processing part and 6) descending order mod F(X) generation part. Especially, the proposed multiplier and inverse element generator give regularity, expansibility and modularity of circuit design.

  • PDF

Design of FM sound synthesizer IC for multimedia with phase bit optimized (위상 데이터 비트수를 최적화한 멀티미디어용 FM 음원합성 IC의 설계)

  • 홍현석;김이섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2978-2990
    • /
    • 1996
  • With the advent of multimedia era, there are ever increasing interest in computer music and sound syntheis. An FM type sound synthesizing method makes possible the syntheis ofvarious sounds ofmusical instruments with a relatively simple hardware architecture. Therefore, in this paper, we designed a hardware architecture for real-time sound synthesizer and its logic gates. In this paper, we designed a basic sound generator for implementation of real-time logic gates, analzed characteristics of sounds synthesized in this architecture and extracted parameters of FM sounds of musical instruments by using the Csound software. The major bolkcs to build the hardware are a phase-generator, a singe-function-generator, an envelope-generator and a multiplier-part. Finally, logic circuits are designed and verified in VHDL and logic gates by 1.0um standard cell library, which will be easily implementable by the form of ASIC.

  • PDF

A Study on 30 kVA Super-Conducting Generator Performance using Open Circuit, Short Circuit Characteristics, and Load Tests (개방회로, 단락회로 특성시험 및 부하시험을 이용한 30 kVA 초전도 발전기의 특성해석)

  • Ha, Gyeong-Deok;Hwang, Don-Ha;Park, Do-Yeong;Kim, Yong-Ju;Gwon, Yeong-Gil;Ryu, Gang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.85-92
    • /
    • 2000
  • 30 kVA rotating-field type Super-Conducting Generator is built and tested with intensive FE(Finite Element) analysis. The generator is driven by VVVF inverter-fed induction motor. Open Circuit Characteristic(OCC) and Short Circuit Characteristic(SCC) are presented in this paper. Also, the test result under the light load(up to 3.6 kW) are given. From the design stage, 2-D FE analysis coupled with the external circuit has been performed. The external circuit includes the end winding resistance and reactance as well as two dampers. When compared with the test data, the FE analysis results show a very good agreement.

  • PDF

Development of an Unmanned Control System of Induction Generator for a Wave Power Plant

  • Hwan, Jeon-Bong;Lim, Yong-Kon;Hong, Seok-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.74.5-74
    • /
    • 2001
  • The wave power plant is a generating system to convert the wave energy resources to electric energy. ´CHUJEON A´, which is a prototype of wave power plant developed by KORDI(Korea Ocean Research and Development Institute), has been launched for its performance test. A wound rotor induction machine is adopted as a generator for the power plant to acquire constant frequency and voltage over wide range of rotor speed. Because the generator of ´CHUJEON A´ has no connection to the power grid line on land, all of the processes to generate and consume the electricity have to be conducted on the floating plant. This paper deals with the design and implementation of the unmanned control system for ´CHUJEON A´. The system includes generator control system, power conversion and charging system, data acquisition and wireless communication system ...

  • PDF

Modal Parameter Identification of a Generator Stator Frame for Fossil Power Plants (화력 발전용 발전기 고정자 프레임의 모드매개변수 규명)

  • 김철홍;류석주;박종포
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.570-576
    • /
    • 1999
  • This paper presents numerical and experimental results of modal parameter identification in a generator stator frame for 500 MW fossil power plants. A commercial finite element analysis S/W was employed for modal analysis. The generator is excited by alternating electromagnetic forces, mainly of 120 Hz in 60 Hz machines, due to magnetic field and electric current in windings. It is necessary to verify that the stator frame has adequate frequency margin from the excitation frequency to avoid possible resonance when operating. Thus, frequency margin required for the stator frame is established using the numerical and experimental results. The results show that the stator frame meets the frequency-margin requirements. Also, results of modal analysis for design modification in order to reduce weights of the stator frame without deteriorating vibration characteristics are presented.

  • PDF

Constant Frequency Control of Generating System Driven by Hydraulic Power - Simulation - (유압 구동식 발전장치의 정주파수 제어 - 시뮬레이션 -)

  • Jeong, Yong-Gil;O, In-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.3
    • /
    • pp.275-281
    • /
    • 1990
  • This study suggests a new type shaft generator driven by hydraulic power suitable for small size vessels. Since the shaft generator system is very easy to be affected by disturbances such as speed variation of the main engine and the load variation of the generator, a robust servo control must be performed to obtain stable electric power with constant frequency. So, in this study the robust servo control method is adopted to the controller design. Dynamic characteristics on the frequency variations of the electric power output according to the disturbances are investigated by computer simulations. From the considerations of the computer simulation results, it is ascertained that the shaft generator system proposed in this study had good control performances.

  • PDF

Design of a High Frequency PWM Converter for Synchronous Generator Excitation System (동기발전기 여자시스템용 고주파 PWM 컨버터 설계)

  • Jang Su-Jin;Ryu Dong-Kyun;Won Chung-Yuen;Lee Jin-Kuk;Bae Kee-Hun;Kim Soo-Suck
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.515-518
    • /
    • 2002
  • A synchronous generator is equipped with an automatic voltage regulator(AVR), which is responsible for keeping the output voltage constant under normal operating conditions at various levels. The output voltage of Synchronous Generator is regulated constantly by field voltage control in excitation system. High frequency PWM converter (Buck converter) type excitation system for synchronous generator that can sustain prefer output voltage level even at the fault condition happened. The proper operation of the proposed excitation system was verified through the simulations and the experiments.

  • PDF

Passivity-based Controller Design for Induction Motor Driven by Doubly-fed Induction Generator (이중권선 유도발전기로 구동되는 유도전동기의 수동성기반제어기 설계)

  • Lee S.C.;Kim J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.639-643
    • /
    • 2003
  • We are interested in this paper on the control of an electromechanical system consisting of a doubly-fed induction generator(DFIG), driven by a prime mover that can supply or extract mechanical power, e.g., a flywheel inertia, and an induction motor(IM). The stator of the Induction machine is connected to the stator of the generator whose rotor voltage is regulated by a bidirectional converter. The main interest of this configuration is that it permits a bidirectional power flow between the motor, which may operate in regenerative mode, and the generator We propose a passivity-based controller to regulate the motor mechanical speed. Since this kind of controllers achieve stabilization via energy balancing, regulation of the power flow in the system is naturally incorporated. Simulation results are presented to illustrate the main points of our paper.

  • PDF

Improved LVRT Capability and Power Smoothening of DFIG Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2011
  • This paper proposes an application of energy storage devices (ESD) for low-voltage ride-through (LVRT) capability enhancement and power smoothening of doubly-fed induction generator (DFIG) wind turbine systems. A grid-side converter (GSC) is used to maintain the DC-link voltage. Meanwhile, a machine-side converter (MSC) is used to control the active and reactive powers independently. For grid disturbances, the generator output power can be reduced by increasing the generator speed, resulting in an increased inertial energy of the rotational body. Design and control techniques for the energy storage devices are introduced, which consist of current and power control loops. Also, the output power fluctuation of the generator due to wind speed variations can be smoothened by controlling the ESD. The validity of the proposed method has been verified by PSCAD/EMTDC simulation results for a 2 MW DFIG wind turbine system and by experimental results for a small-scale wind turbine simulator.