• 제목/요약/키워드: Design Environments

Search Result 3,143, Processing Time 0.029 seconds

Thermodynamic simulation and structural optimization of the collimator in the drift duct of EAST-NBI

  • Ning Tang;Chun-dong Hu;Yuan-lai Xie;Jiang-long Wei;Zhi-Wei Cui;Jun-Wei Xie;Zhuo Pan;Yao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4134-4145
    • /
    • 2022
  • The collimator is one of the high-heat-flux components used to avoid a series of vacuum and thermal problems. In this paper, the heat load distribution throughout the collimator is first calculated through experimental data, and a transient thermodynamic simulation analysis of the original model is carried out. The error of the pipe outlet temperature between the simulated and experimental values is 1.632%, indicating that the simulation result is reliable. Second, the model is optimized to improve the heat transfer performance of the collimator, including the contact mode between the pipe and the flange, the pipe material and the addition of a twisted tape in the pipe. It is concluded that the convective heat transfer coefficient of the optimized model is increased by 15.381% and the maximum wall temperature is reduced by 16.415%; thus, the heat transfer capacity of the optimized model is effectively improved. Third, to adapt the long-pulse steady-state operation of the experimental advanced superconducting Tokamak (EAST) in the future, steady-state simulations of the original and optimized collimators are carried out. The results show that the maximum temperature of the optimized model is reduced by 37.864% compared with that of the original model. The optimized model was changed as little as possible to obtain a better heat exchange structure on the premise of ensuring the consumption of the same mass flow rate of water so that the collimator can adapt to operational environments with higher heat fluxes and long pulses in the future. These research methods also provide a reference for the future design of components under high-energy and long-pulse operational conditions.

Effect of Curing Temperature and Autofrettage Pressure on a Type 3 Cryogenic Propellant Tank (경화온도와 자긴 압력이 Type 3 극저온 추진제 탱크에 미치는 영향 연구)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.31-38
    • /
    • 2006
  • In this study, effects of curing temperature and autofrettage pressure on a Type 3 cryogenic propellant tank, which is composed of composite hoop/helical layers and a metal liner, were investigated by thermo elastic analysis and composite/aluminum ring specimen tests. Temperature field of a Type 3 tank was obtained from solving the heat transfer problem and, in turn, was used as nodal temperature boundary conditions during the elastic analyses for curing temperature and autofrettage pressure effects. As a result, it was shown that the higher curing temperature was, the more residual compressive stress and tensile stress were induced in composites and metal liner, respectively. On the contrary, autofrettage pressure brought the reduction of these residual thermal stresses caused by cryogenic environments to the tank structure. This tradeoff for curing temperature and autofrettage pressure must be considered in the design and manufacturing stages for a Type 3 cryogenic tank.

Development of a Translator for Automatic Generation of Ubiquitous Metaservice Ontology (유비쿼터스 메타서비스 온톨로지 자동 생성을 위한 번역기 개발)

  • Lee, Mee-Yeon;Lee, Jung-Won;Park, Seung-Soo;Cho, We-Duke
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.191-203
    • /
    • 2009
  • To provide dynamic services for users in ubiquitous computing environments by considering context in real-time, in our previous work we proposed Metaservice concept, the description specification and the process for building a Metaservice library. However, our previous process generates separated models - UML, OWL, OWL-S based models - from each step, so it did not provide the established method for translation between models. Moreover, it premises aid of experts in various ontology languages, ontology editing tools and the proposed Metaservice specification. In this paper, we design the translation process from domain ontology in OWL to Metaservice Library in OWL-S and develop a visual tool in order to enable non-experts to generate consistent models and to construct a Metaservice library. The purpose of the Metaservice Library translation process is to maintain consistency in all models and to automatically generate OWL-S code for Metaservice library by integrating existing OWL model and Metaservice model.

Design and Implementation of a XHTML to VoiceXML Converter based on EXI in Pervasive Environments (편재형 컴퓨팅 환경에서 XHTML과 VoiceXML간 EXI 문서의 변환시스템 설계와 구현)

  • Shin, Kyoung-Hee;Kwak, Dong-Gyu;Yoo, Chae-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.13-20
    • /
    • 2009
  • In a pervasive environment, there are various applications as much as connections of various devices. In this computing environment, XML is the most suitable data representation method. XML is able to transform data for other application areas using XSLT. XML is text-based, the file size of XML document is bigger than binary data file. Therefore, XML has a disadvantage that it is hard to deal with XML in a pervasive environment. In this paper, we survey encoding methods of XML documents, and then we propose a transform method that transforms an encoded EXI format XML document into an EXI format XML document suited for other applications. Among various applications, we present a system that transforms an EXI format XHTML document into an VoiceXML document. This system can improve reusability of EXI format XML documents in a pervasive environment and it is expected to contributes utilization of EXI format XML documents.

An Investigation for Driving Behavior on the Exit-ramp Terminal in Urban Underground Roads Using a Driving Simulator (주행 시뮬레이터를 활용한 도심 지하도로 유출연결로 접속부 주행행태 분석)

  • Jeong, Seungwon;Song, Minsoo;Hwang, Sooncheon;Lee, Dongmin;Kwon, Wantaeg
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.123-140
    • /
    • 2022
  • Even though driving behaviors in underground roads can be significantly different from ground roads, existing underground roads follow the design guidelines of ground roads. In this context, this study investigates the driving behaviors of the exit-ramp terminal of urban underground roads using a driving simulator. Virtual driving experiments were performed by analyzing scenarios between the underground and ground road environments. The experiments' driving behavior data for each geometry section are compared and validated through a statistical significance test. This test showed that the speed in the underground road environment is relatively low, and the LPM tends to move away from the adjacent tunnel wall. Based on these findings, this study suggests implications and feasible solutions for improving driver's safety in the exit-ramp terminal of the underground roads.

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.

Cloud security authentication platform design to prevent user authority theft and abnormal operation during remote control of smart home Internet of Things (IoT) devices (스마트 홈 사물인터넷 기기(IoT)의 원격제어 시 사용자 권한 탈취 및 이상조작 방지를 위한 클라우드 보안인증 플랫폼 설계)

  • Yoo Young Hwan
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • The use of smart home appliances and Internet of Things (IoT) devices is growing, enabling new interactions and automation in the home. This technology relies heavily on mobile services which leaves it vulnerable to the increasing threat of hacking, identity theft, information leakage, serious infringement of personal privacy, abnormal access, and erroneous operation. Confirming or proving such security breaches have occurred is also currently insufficient. Furthermore, due to the restricted nature of IoT devices, such as their specifications and operating environments, it is difficult to provide the same level of internet security as personal computers. Therefore, to increase the security on smart home IoT devices, attention is needed on (1) preventing hacking and user authority theft; (2) disabling abnormal manipulation; and (3) strengthening audit records for device operation. In response to this, we present a plan to build a cloud security authentication platform which features security authentication management functionality between mobile terminals and IoT devices.

Effects of a Nursing Simulation Learning Module on Clinical Reasoning Competence, Clinical Competence, Performance Confidence, and Anxiety in COVID-19 Patient-Care for Nursing Students (코로나19 간호시뮬레이션 학습모듈이 간호대학생의 임상추론역량, 임상수행능력, 간호수행자신감 및 불안에 미치는 효과)

  • Kim, Ye-Eun;Kang, Hee-Young
    • Journal of Korean Academy of Nursing
    • /
    • v.53 no.1
    • /
    • pp.87-100
    • /
    • 2023
  • Purpose: This study aimed to develop a nursing simulation learning module for coronavirus disease 2019 (COVID-19) patient-care and examine its effects on clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient care for nursing students. Methods: A non-equivalent control group pre- and post-test design was employed. The study participants included 47 nursing students (23 in the experimental group and 24 in the control group) from G City. A simulation learning module for COVID-19 patient-care was developed based on the Jeffries simulation model. The module consisted of a briefing, simulation practice, and debriefing. The effects of the simulation module were measured using clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient-care. Data were analyzed using χ2-test, Fisher's exact test, t-test, Wilcoxon signed-rank test, and Mann-Whitney U test. Results: The levels of clinical reasoning competence, clinical competence, and performance confidence of the experimental group were significantly higher than that of the control group, and the level of anxiety was significantly low after simulation learning. Conclusion: The nursing simulation learning module for COVID-19 patient-care is more effective than the traditional method in terms of improving students' clinical reasoning competence, clinical competence, and performance confidence, and reducing their anxiety. The module is expected to be useful for educational and clinical environments as an effective teaching and learning strategy to empower nursing competency and contribute to nursing education and clinical changes.

Comparison of Characteristics of Gamma-Ray Imager Based on Coded Aperture by Varying the Thickness of the BGO Scintillator

  • Seoryeong Park;Mark D. Hammig;Manhee Jeong
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.214-225
    • /
    • 2022
  • Background: The conventional cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)) scintillator-based gamma-ray imager has a bulky detector, which can lead to incorrect positioning of the gammaray source if the shielding against background radiation is not appropriately designed. In addition, portability is important in complex environments such as inside nuclear power plants, yet existing gamma-ray imager based on a tungsten mask tends to be weighty and therefore difficult to handle. Motivated by the need to develop a system that is not sensitive to background radiation and is portable, we changed the material of the scintillator and the coded aperture. Materials and Methods: The existing GAGG(Ce) was replaced with Bi4Ge3O12 (BGO), a scintillator with high gamma-ray detection efficiency but low energy resolution, and replaced the tungsten (W) used in the existing coded aperture with lead (Pb). Each BGO scintillator is pixelated with 144 elements (12 × 12), and each pixel has an area of 4 mm × 4 mm and the scintillator thickness ranges from 5 to 20 mm (5, 10, and 20 mm). A coded aperture consisting of Pb with a thickness of 20 mm was applied to the BGO scintillators of all thicknesses. Results and Discussion: Spectroscopic characterization, imaging performance, and image quality evaluation revealed the 10 mm-thick BGO scintillators enabled the portable gamma-ray imager to deliver optimal performance. Although its performance is slightly inferior to that of existing GAGG(Ce)-based gamma-ray imager, the results confirmed that the manufacturing cost and the system's overall weight can be reduced. Conclusion: Despite the spectral characteristics, imaging system performance, and image quality is slightly lower than that of GAGG(Ce), the results show that BGO scintillators are preferable for gamma-ray imaging systems in terms of cost and ease of deployment, and the proposed design is well worth applying to systems intended for use in areas that do not require high precision.

DEVELOPMENT OF LIGHTWEIGHT OPTICAL TELESCOPE KIT USING ALUMINUM PROFILE AND ISOGRID STRUCTURE

  • Park, Woojin;Lee, Sunwoo;Han, Jimin;Ahn, Hojae;Ji, Tae-Geun;Kim, Changgon;Kim, Dohoon;Lee, Sumin;Kim, Young-Jae;Kim, Geon-Hee;Kim, Junghyun;Kim, Ilhoon;Pak, Soojong
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • We introduce the Transformable Reflective Telescope (TRT) kit that applies an aluminum profile as a base plate for precise, stable, and lightweight optical system. It has been utilized for optical surface measurements, developing alignment and baffle systems, observing celestial objects, and various educational purposes through Research & Education projects. We upgraded the TRT kit using the aluminum profile and truss and isogrid structures for a high-end optical test device that can be used for prototyping of precision telescopes or satellite optical systems. Thanks to the substantial aluminum profile and lightweight design, mechanical deformation by self-weight is reduced to maximum 67.5 ㎛, which is an acceptable misalignment error compared to its tolerance limits. From the analysis results of non-linear vibration simulations, we have verified that the kit survives in harsh vibration environments. The primary mirror and secondary mirror modules are precisely aligned within 50 ㎛ positioning error using the high accuracy surface finished aluminum profile and optomechanical parts. The cross laser module helps to align the secondary mirror to fine-tune the optical system. The TRT kit with the precision aluminum mirror guarantees high quality optical performance of 5.53 ㎛ Full Width at Half Maximum (FWHM) at the field center.