• Title/Summary/Keyword: Design Environments

Search Result 3,128, Processing Time 0.031 seconds

A Study on the Post Occupancy Evaluation of Residential Environments in a Townhouse based on Residents' Satisfactions - Centered on Residents of 'H Townhouse' which is Located at Paju in KyungGi-Do - (타운하우스 거주자들의 거주 후 만족도에 관한 연구 - 경기도 파주에 위치한 'H 타운하우스'의 거주자를 중심으로 -)

  • Kim, Mi Jeong;Cho, Myung-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.1
    • /
    • pp.117-127
    • /
    • 2011
  • Townhouse have been developed as alternative housing types for combining the characteristics of detached houses and high-rise apartments, Much research on townhouse have investigated physical environments of townhouse and provide a number of planning factors to be considered. However, these factors do not reflect the residents' experiences of the environments sufficiently. The aim of this research is to investigate residents' satisfactions in townhouse as an exploratory study which can be a basis for the improvement of residential environments in townhouse. First of all, we selected a target townhouse and conducted a field study to examine the existing state of the townhouse. Then a customized questionnaire was developed and distributed to residents in the townhouse for investigating their satisfactions on the residential environment. The questions included are divided into four categories; site environment, unit space, community area and housing management. Through the statistic analyses of the residents' responses, the residents' satisfactions of the residential environment were identified. Especially the residents' satisfaction on the community area, which revitalizes neighborhood relationships, is very high. They were also satisfied with the conditions of the sub-categories, 'a distinctive exterior' 'a private planning', 'outdoors' and 'landscapes', in townhouse. In conclusion, we suggested considerations for the improvement of the residential environments and the quality of life in townhouse.

Plant breeding in the 21st century: Molecular breeding and high throughput phenotyping

  • Sorrells, Mark E.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.14-14
    • /
    • 2017
  • The discipline of plant breeding is experiencing a renaissance impacting crop improvement as a result of new technologies, however fundamental questions remain for predicting the phenotype and how the environment and genetics shape it. Inexpensive DNA sequencing, genotyping, new statistical methods, high throughput phenotyping and gene-editing are revolutionizing breeding methods and strategies for improving both quantitative and qualitative traits. Genomic selection (GS) models use genome-wide markers to predict performance for both phenotyped and non-phenotyped individuals. Aerial and ground imaging systems generate data on correlated traits such as canopy temperature and normalized difference vegetative index that can be combined with genotypes in multivariate models to further increase prediction accuracy and reduce the cost of advanced trials with limited replication in time and space. Design of a GS training population is crucial to the accuracy of prediction models and can be affected by many factors including population structure and composition. Prediction models can incorporate performance over multiple environments and assess GxE effects to identify a highly predictive subset of environments. We have developed a methodology for analyzing unbalanced datasets using genome-wide marker effects to group environments and identify outlier environments. Environmental covariates can be identified using a crop model and used in a GS model to predict GxE in unobserved environments and to predict performance in climate change scenarios. These new tools and knowledge challenge the plant breeder to ask the right questions and choose the tools that are appropriate for their crop and target traits. Contemporary plant breeding requires teams of people with expertise in genetics, phenotyping and statistics to improve efficiency and increase prediction accuracy in terms of genotypes, experimental design and environment sampling.

  • PDF

Modeling and Simulation of HMI Behaviors of 3D Virtual Products using XML (XML을 이용한 3D 가상 제품의 HMI 행동양태 모델링과 시뮬레이션 방안)

  • Jung, Ho-Kyun;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In the virtual prototyping (VP) of digital products, it is important to provide the people involved in product development with the visualization and interaction of the products, and the simulation of their human machine interaction (HMI) behaviors in interactive 3D virtual environments. Especially, for the HMI behavior simulation, it is necessary to represent them properly and to play them back effectively according to user interaction in the virtual environments. In a conventional approach to HMI behavior simulation, user interface (UI) designers use UI design software tools to generate the HMI behavior of a digital product of interest. Due to lack of reusability of the HMI behavior, VP developers need to analyze and integrate it into a VP system for its simulation in a 3D virtual environment. As this approach hinders the effective communication between the UI designers and the VP developers, it is easy to create errors and thereby it takes significant time and effort especially when it is required to represent the HMI behavior to the finest level of detail. In order to overcome the shortcomings of the conventional approach, we propose an approach for representing the HMI behavior of a digital product using XML (eXtensible Markup Language) and for reusing it to perform the HMI behavior simulation in 3D virtual environments. Based on the approach, a VP system has been developed and applied for the design evaluation of various products. A case study about the design evaluation is given to show the usefulness of the proposed approach.

CFD Study for the Design of Coolant Path in Cryogenic Etch Chuck

  • Jo, Soo Hyun;Han, Ji Hee;Kim, Jong Oh;Han, Hwi;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.92-97
    • /
    • 2021
  • The importance of processes in cryogenic environments is increasing in a way to address problems such as critical dimension (CD) narrow and bottlenecks in micro-processing. Accordingly, in this paper, we proceed with the design and analysis of Electrostatic Chuck(ESC) and Coolant in cryogenic environments, and present optimal model conditions to provide the temperature distribution analysis of ESC in these environments and the appropriate optimal design. The wafer temperature uniformity was selected as the reference model that the operating conditions of the refrigerant of the liquid nitrogen in the doubled aluminum path were excellent. Design of simulation (DOS) was carried out based on the wheel settings within the selected reference model and the classification of three mass flow and diameter case, respectively. The comparison between factors with p-value less than 0.05 indicates that the optimal design point is when five turns of coolant have a flow rate of 0.3 kg/s and a diameter of 12 mm. ANOVA determines the interactions between the above factor, indicating that mass flow is the most significant among the parameters of interests. In variable selection procedure, Case 2 was also determined to be superior through the two-Sample T-Test of the mean and variance values by dividing five coolant wheels into two (Case 1 : 2+3, Case 2: 3+2). Finally, heat transfer analysis processes such as final difference method (FDM) and heat transfer were also performed to demonstrate the feasibility and adequacy of the analysis process.

Spinel Materials for High Power Batteries

  • Kim Jaekook
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.103-120
    • /
    • 2003
  • [ $\because$ ] Technology-driven new needs- Various kinds of requirment depend on environments. $\because$ Science-driven design and synthesis

  • PDF

A Reconfigurable Integration Test and Simulation Bed for Engagement Control Using Virtualization (가상화 기반의 재구성 용이한 교전통제 통합시험시뮬레이션 베드)

  • Kilseok Cho;Ohkyun Jeong;Moonhyung Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.91-101
    • /
    • 2023
  • Modeling and Simulation(M&S) technology has been widely used to solve constraints such as time, space, safety, and cost when we implement the same development and test environments as real warfare environments to develop, test, and evaluate weapon systems for the last several decades. The integration and test environments employed for development and test & evaluation are required to provide Live Virtual Construction(LVC) simulation environments for carrying out requirement analysis, design, integration, test and verification. Additionally, they are needed to provide computing environments which are possible to reconfigure computing resources and software components easily according to test configuration changes, and to run legacy software components independently on specific hardware and software environments. In this paper, an Integration Test and Simulation for Engagement Control(ITSEC) bed using a bare-metal virtualization mechanism is proposed to meet the above test and simulation requirements, and it is applied and implemented for an air missile defense system. The engagement simulation experiment results conducted on air and missile defense environments demonstrate that the proposed bed is a sufficiently cost-effective and feasible solution to reconfigure and expand application software and computing resources in accordance with various integration and test environments.

Agent-Based Collaborative Design System and Case-Based Conflict Resolution (원격공동설계 시스템 구축을 위한 에이전트 기반 접근 및 사례기반 의사충돌 해결)

  • 이경호;이규열
    • Journal of Information Technology Application
    • /
    • v.1
    • /
    • pp.99-127
    • /
    • 1999
  • Under the concept of global economy, the enterprises are assigning design and production environments around the world in different areas. A serious problem of information exchange emerges as companies use traditional hardware and very distinct softwares appropriate to their field of expertise. To overcome the decreased productivity due to the interruption of information, the concept of simultaneous engineering and concurrent design becomes very significant. In this article, an agent-based ship design system is developed in order to support a cooperation in distributed ship design environments. Above all, the conflicts that occur in the middle of knowledge sharing in the system must be resolved. An approach to do this is the case-based conflict resolution strategy formulated to resolve current conflict on the basis of previous resolved similar cases in agent-based collaborative design system environments. To do this conflict cases that occur in initial ship design stage are extracted. On the basis of the extracted cases, case-base is constructed. In addition conflict resolution handler located in the facilitator is developed to treat conflict problems effectively by reasoning of the case-base and thus presenting an appropriate solution. The validation of developed case-based conflict resolution strategy is evaluated by applying to collaborative design process in initial ship design stage, especially the machinery outfitting design, the preliminary design, the hullform design, and the structural design. Through the help of the cooperation of the design agents, the facilitator, the conflict resolution handler, and the case-based system, a designer can be supported effectively in his/her decision-making based on the previous cases resolved similarly.

  • PDF