• Title/Summary/Keyword: Design Durability

Search Result 1,352, Processing Time 0.034 seconds

Analysis of Equivalent Torque of 78 kW Agricultural Tractor during Rotary Tillage (78 kW급 농업용 트랙터의 로타리 경운 작업에 따른 등가 토크 분석)

  • Baek, Seung-Min;Kim, Wan-Soo;Park, Seong-Un;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.359-365
    • /
    • 2019
  • This paper is a basic study for the performance evaluation, durability improvement and optimal design of tractor transmission. The engine torque of the 78 kW agricultural tractor during rotary tillage was measured using CAN communication. It was calculated with equivalent torque and then analyzed. In order to develop a reliable tractor, it is important to convert measured torque in various agricultural operations into equivalent torque and analyze it. The equivalent torque was calculated using Palmgren-Miner's rule, which is a representative cumulative damage law. The equivalent torque of rotary tillage period and steering period are 229.2 and 136.7 Nm, respectively. The maximum and average torque during rotary tillage period are 336.0 and 234.4 Nm, respectively. The maximum and average torque of the steering period are 288.0 and 134.6 Nm, respectively. The engine torque in rotary tillage period is higher than in the steering period because of cultivation of soil through PTO. The maximum and rated torque of engine are 387.0 and 323.0 Nm, respectively, which are 183% and 136% higher than the equivalent torque during rotary tillage and of steering section. Because transmission of agricultural tractor in Korea companies is generally designed by the rated torque of engine, there is a difference from measured torque during agricultural operations. Therefore, it is necessary to consider it for optimal design.

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

A Study on Efficient Deconstruction of Supporters with Response Ratio (응답비를 고려한 효율적인 버팀보 해체방안에 관한연구)

  • Choi, Jung-Youl;Park, Sang-Wook;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.469-475
    • /
    • 2022
  • As the recent structure construction is constructed as a large-scale and deep underground excavation in close proximity to the building, the installation of retaining wall and supporters (Struts) has become complicated, and the number of supporters to avoid interference of the structural slab has increased. This construction process becomes a factor that causes an increase in construction joints of a structure, leakage and an increase in wall cracks. In addition, this reduced the durability and workability of the structure and led to an increase in the construction period. This study planned to dismantle the two struts simultaneously as a plan to reduce the construction joints, and corrected the earth pressure by assuming the reaction force value by the initial earth pressure and the measured data as the response ratio. After recalculating the corrected earth pressure through the iterative trial method, it was verified by numerical analysis that simultaneous disassembly of the two struts was possible. As a result of numerical analysis applying the final corrected earth pressure, the measured value for the design reaction force was found to be up to 197%. It was analyzed that this was due to the effect of grouting on the ground and some underestimation of the ground characteristics during design. Based on the result of calculating the corrected earth pressure in consideration of the response ratio performed in this study, it was proved analytically that the improvement of the brace dismantling process is possible. In addition, it was considered that the overall construction period could be shortened by reducing cracks due to leakage and improving workability by reducing construction joints. However, to apply the proposed method of this study, it is judged that sufficient estimations are necessary as there are differences in ground conditions, temporary facilities, and reinforcement methods for each site.

Stochastic investigation on three-dimensional diffusion of chloride ions in concrete

  • Ye Tian;Yifei Zhu;Guoyi Zhang;Zhonggou Chen;Huiping Feng;Nanguo Jin;Xianyu Jin;Hongxiao Wu;Yinzhe Shao;Yu Liu;Dongming Yan;Zheng Zhou;Shenshan Wang;Zhiqiang Zhang
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.247-261
    • /
    • 2023
  • Due to the non-uniform distribution of meso-structure, the diffusion of chloride ions in concrete show the characteristics of characteristics of randomness and fuzziness, which leads to the non-uniform distribution of chloride ions and the non-uniform corrosion of steel rebar in concrete. This phenomenon is supposed as the main reason causing the uncertainty of the bearing capacity deterioration of reinforced concrete structures. In order to analyze and predict the durability of reinforced concrete structures under chloride environment, the random features of chloride ions transport in concrete were studied in this research from in situ meso-structure of concrete. Based on X-ray CT technology, the spatial distribution of coarse aggregates and pores were recognized and extracted from a cylinder concrete specimen. In considering the influence of ITZ, the in situ mesostructure of concrete specimen was reconstructed to conduct a numerical simulation on the diffusion of chloride ions in concrete, which was verified through electronic microprobe technology. Then a stochastic study was performed to investigate the distribution of chloride ions concentration in space and time. The research indicates that the influence of coarse aggregate on chloride ions diffusion is the synthetic action of tortuosity and ITZ effect. The spatial distribution of coarse aggregates and pores is the main reason leading to the non-uniform distribution of chloride ions both in spatial and time scale. The chloride ions concentration under a certain time and the time under a certain concentration both satisfy the Lognormal distribution, which are accepted by Kolmogorov-Smirnov test and Chi-square test. This research provides an efficient method for obtain mass stochastic data from limited but representative samples, which lays a solid foundation for the investigation on the service properties of reinforced concrete structures.

Determination of Solidified Material's Optimum Mixing Ratio for Reservoir Embankment Reinforcement (저수지 제체 보강을 위한 고화재 최적 배합비 결정)

  • Jaegeun Woo;Jungsoon Hwang;Seungwook Kim;Seungcheol Baek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.5-12
    • /
    • 2024
  • Currently, a grouting method that minimizes damage to the reservoir embankment by injecting solidification agent at low pressure is commonly used to ensure waterproofing and safety of the embankment, but the use of solidification agents can cause issues, such as a decrease in durability and a lack of clear method for determining the mixing ratio. In this study, when the base ground and solidification agent were stirred and mixed at various weight mixing ratios, the permeability coefficient and strength of the mixture were confirmed through laboratory tests, and the optimal mixing ratio was suggested through analysis of the test results. The specimen for the laboratory test was produced considering the mixing ratio of the solidification agent. The specimen for the permeability coefficient test was tested by producing one each of cohesionless and cohesive soil for a mixing amount of 1.5 kN/m3 of solidification agent, and the permeability test results confirmed that the water barrier performance was secured below the permeability coefficient value required by various design criteria. A total of 24 specimens for the strength test were produced, 3 for each of 5 mixing amounts for cohesive soil and 3 mixing amounts for cohesionless soil. The strength test results showed that the uniaxial compressive strength tends to increase linearly with increasing curing time for both cohesionless soil and cohesive soil when the mixing amount is less than 2.0 kN/m3. Therefore, the optimal mixing ratio applied to the site is determined to be mixing amount of 1.5 kN/m3 and 2.0 kN/m3. Finally, numerical analysis reflecting test results was conducted on design case for improvement projects for aging reservoirs embankment to verify the water barrier performance and safety improvement effects.

A Study of Design Parameter for the Field Application of High Performance Permanent Form (HPPF) Using Stainless Steel Fiber (스테인레스 강섬유를 이용한 고성능 영구거푸집적용 벽체구조물의 설계변수 연구)

  • Sim, Jong Sung;Oh, Hong Seob;Ju, Min Kwan;Ha, Woo Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 2008
  • In the construction site, to improve the man-dependent form work, non-stripping form has been studied but the developed non-stripping form was hard to applied with respect to the cost, form size and performance. This study is for evaluating the adaptability of the developed non-stripping form named as high performance permanent form (HPPF). To do this, the analytical approach and parametric study were performed based on the research for fundamental material characteristic of the HPPF. The target concrete structure is a wall structure because of its effectiveness of HPPF. To evaluate the structural efficiency of the HPPF applied wall structure, FEM analysis was performed to decide the maximum placing height at one time then it was applied to design the wall structure. In the result of the analysis, the HPPF applied wall structure showed the lots of advantages that it can reduce the cost resulted from reducing concrete and steel rebar even if it has same structural performance to the conventional concrete wall structure with same dimension. With this analysis result, it can be evaluated that the HPPF applied concrete structure can be a concrete structure with the long term durability in site.

An Assessment on the Urban Riverfront in Shincheon, Daegu - Focused on a Universal Design Concept - (대구광역시 신천의 친수공간 평가 연구 - 유니버설디자인 개념을 중심으로 -)

  • Choi, Dong-Sik;Moon, Ji-Won;Kim, Shang-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.2
    • /
    • pp.1-14
    • /
    • 2012
  • The purpose of this study is to derive a desirable riverfront construction plan to me for the activities of citizens through the evaluation and analysis of the urban riverfront space from the perspective of universal design. Therefore, previous studies were examined in order to induce evaluation tools that bhve been grafted from the universal design concept; in addition, a field survey was conducted in Shincheon, Daegu, which was selected as the study target, in order to induce problems and improvement directions from the perspective of universal design. The major results can be summarized as follows. (1) In the 'fairness' aspect, all the items such as installation of integrated functional signage, showing pictures, symbols, foreign language signs, and restroom entrances signage were determined to be 'All Unsuitable' for all sections; and therefore, it is necessary to improve the fairness of usage for everybody. (2) In the 'Functionality(Usability)' aspect, all items such as installation of bicycle paths beside access roads, installation of integrated functional signs, and night light signs were determined to be 'All Unsuitable' for all sections; therefore, it is necessary to improve the functionalities of these facilities. (3) In the 'Convenience' aspect, all items such as the installation of bicycle parking areas, continuous rest facilities, and back and ann support(handles) at resting facilities were determined to be 'All Unsuitable' for many sections; therefore, it is necessary to improve these facilities for the convenience of usage. (4) In the 'Information(Recognizability)' aspect, all items such as showing pictures, symbols, foreign languages and installation of night light signs, and restroom entrances signage were determined to be 'All Unsuitable' for all sections; therefore, it is necessary to improve the recognizability to minimize misunderstandings and confusion. (5) In the 'Safety' aspect, all items such as the installation of safe pedestrian paths in parking areas, using anti-slip and shock absorption materials on restroom floors, and the continuous installation of pedestrian paths that are separate from bicycle paths were determined to be 'All Unsuitable' for all sections; therefore, it is necessary to improve the safety to prevent accidents. (6) In the 'Amenity' aspect, access roads, parking areas, hygiene facilities, convenience facilities, and waterside facilities for many sections were determined to be 'All Unsuitable'; therefore, it is necessary to conduct more concentrated hygiene management. (7) In the 'Accessibility(Mobility)' aspect, all items such as the installation of safe pedestrian paths in parking areas, and continuous pedestrian paths that are separate from bicycle paths were determined to be 'All Unsuitable' for all sections; therefore, it is necessary to improve the accessibility to provide safety and convenience. (8) In the 'Durability' aspect, access roads, parking areas, rest facilities, convenience facilities, fitness facilities, and waterside facilities were determined to be 'All Unsuitable' for many sections, therefore, it is necessary to improve sunken or damaged areas by inspecting facilities by section.

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Selection of Retaining Wall System for Underground Parking Lots Expansion of Apartments (거주중 공동주택의 지하주차장확대를 위한 흙막이공법 선정)

  • Ro, Young-Chang;Lee, Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2008
  • Rapidly increasing automobile supply rate according to improved economic level of life makes lack of parking space of apartments. Even though the initial design of parking space compiled with old regulations, it may not observe either new laws or requirement of inhabitants. Even if old apartments have no structural durability problem, outworn facilities and insufficient parking area may be a main reason for reconstruction. It causes waste of national resources and makes recycling issues. Additionally, irregularly parked cars make traffic obstruction to a fire engine and result in many fire accident victims. Parking problems of apartments are not only inconvenience but also serious safety issues. From these points of view, remodeling only for parking area expansion is necessary to avoid overall reconstruction of apartments. The purpose of this study is to suggest a retaining wall selection method for apartments underground parking lots expansion without evacuation of resident people. Effect factors to select retaining wall system are analyzed and weight values are calculated by applying AHP. One selection method of retaining wall is proposed by evaluating applicability and its sensitivity analysis is executed. This selection method is expected to help decision-making of retaining wall system selection.

Design and Fabrication of 4-beam Silicon-Micro Piezoresistive Accelerometer for TPMS Application (TPMS용 4빔 실리콘 미세 압저항형 가속도센서의 설계 및 제작)

  • Park, Ki-Woong;Kim, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • This paper presents the accelerometer which is a key component of TPMS(Tire Pressure Monitoring System). Generally a piezoresistive accelerometer has characteristics of lower cost, better linearity and better immunity about the environmnet noise than a capacitive one. Three types of piezoresistive accelerometers are degined and simulated using ANSYS program. The best one is a piezoresistive sensor which is supported by four beams located at the center of the edge of the mass after comparing the characteristics of resonant frequency of the three types. Considering the sensor size and a simulated maximum stress and maximum displacement, the length of beams is set as $200{\mu}m$. The size of a piezoresistive accelerometer is $3.0mm{\times}3.0mm{\times}0.4mm$. The sensor output is characterized by measuring the output characteristic depending on angle. As a result the offset voltage of the accelerometer is 43.2 mV and its sensitivity is $42.5{\mu}V/V/g$. The temperature bias drift is measured. The shock durability of the sensor is 1500g and the measuring range is 0 ~ 60 g.