• Title/Summary/Keyword: Descriptors

Search Result 506, Processing Time 0.02 seconds

Classification and Regression Tree Analysis for Molecular Descriptor Selection and Binding Affinities Prediction of Imidazobenzodiazepines in Quantitative Structure-Activity Relationship Studies

  • Atabati, Morteza;Zarei, Kobra;Abdinasab, Esmaeil
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2717-2722
    • /
    • 2009
  • The use of the classification and regression tree (CART) methodology was studied in a quantitative structure-activity relationship (QSAR) context on a data set consisting of the binding affinities of 39 imidazobenzodiazepines for the α1 benzodiazepine receptor. The 3-D structures of these compounds were optimized using HyperChem software with semiempirical AM1 optimization method. After optimization a set of 1481 zero-to three-dimentional descriptors was calculated for each molecule in the data set. The response (dependent variable) in the tree model consisted of the binding affinities of drugs. Three descriptors (two topological and one 3D-Morse descriptors) were applied in the final tree structure to describe the binding affinities. The mean relative error percent for the data set is 3.20%, compared with a previous model with mean relative error percent of 6.63%. To evaluate the predictive power of CART cross validation method was also performed.

CLASSIFICATION OF AQUATIC AREAS FOR NATURAL AND MODIFIED RIVERS

  • Cheong, Tae-Sung;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 2001
  • For the design of suitable aquatic habitats and habitat management purposes, sensitive descriptors for aquatic areas were identified and analyzed. The classification system of the aquatic areas were developed for natural streams and modified streams in Korea. Relationships among the descriptors of an aquatic area such as channel width, meander wave length, and arc angle have been defined. The analysis indicates that the total mean sinuosity is 1.25 for the main channels of natural streams, whereas the mean value of the sinuosity of modified streams is 1.14. The mean values of the total area, the width, and the length for the sandbars of natural streams are larger than those of modified streams.

  • PDF

Quantitative Structure-Activity Relationships (QSAR) Study on C-7 Substituted Quinolone

  • Lee, Geun U;Gwon, Sun Yeong;Hwang, Seon Gu;Lee, Jae Uk;Kim, Ho Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.147-152
    • /
    • 1996
  • To see the quantitative relationship between the structures of the C-7 substituted quinolones and their antibacterial activities, theoretical parameters such as the molecular van der Waals volume, surface area and some electrostatic parameters based on the molecular electrostatic potential, which represent lipophilicity, and some quantum mechanical parameters are introduced as descriptors. The sixteen substituted quinolone derivatives and twenty bacteria are used for the study. It is found that the QSARs of C-7 substituted quinolones are obtained for eleven bacteria and our descriptors are more useful for Gram positive organisms than negative ones. It is also shown that molecular surface area (or molecular Waals volume) of the C-7 substituent and net charge of C-7 atom of the quinolones are the descriptors of utmost importance.

Intra-class Local Descriptor-based Prototypical Network for Few-Shot Learning

  • Huang, Xi-Lang;Choi, Seon Han
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.52-60
    • /
    • 2022
  • Few-shot learning is a sub-area of machine learning problems, which aims to classify target images that only contain a few labeled samples for training. As a representative few-shot learning method, the Prototypical network has been received much attention due to its simplicity and promising results. However, the Prototypical network uses the sample mean of samples from the same class as the prototypes of that class, which easily results in learning uncharacteristic features in the low-data scenery. In this study, we propose to use local descriptors (i.e., patches along the channel within feature maps) from the same class to explicitly obtain more representative prototypes for Prototypical Network so that significant intra-class feature information can be maintained and thus improving the classification performance on few-shot learning tasks. Experimental results on various benchmark datasets including mini-ImageNet, CUB-200-2011, and tiered-ImageNet show that the proposed method can learn more discriminative intra-class features by the local descriptors and obtain more generic prototype representations under the few-shot setting.

Automatic Video Management System Using Face Recognition and MPEG-7 Visual Descriptors

  • Lee, Jae-Ho
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.806-809
    • /
    • 2005
  • The main goal of this research is automatic video analysis using a face recognition technique. In this paper, an automatic video management system is introduced with a variety of functions enabled, such as index, edit, summarize, and retrieve multimedia data. The automatic management tool utilizes MPEG-7 visual descriptors to generate a video index for creating a summary. The resulting index generates a preview of a movie, and allows non-linear access with thumbnails. In addition, the index supports the searching of shots similar to a desired one within saved video sequences. Moreover, a face recognition technique is utilized to personalbased video summarization and indexing in stored video data.

  • PDF

WebChemDB: An Integrated Chemical Database Retrieval System

  • Hou, Bo-Kyeng;Moon, Eun-Joung;Moon, Sung-Chul;Kim, Hae-Jin
    • Genomics & Informatics
    • /
    • v.7 no.4
    • /
    • pp.212-216
    • /
    • 2009
  • WebChemDB is an integrated chemical database retrieval system that provides access to over 8 million publicly available chemical structures, including related information on their biological activities and direct links to other public chemical resources, such as PubChem, ChEBI, and DrugBank. The data are publicly available over the web, using two-dimensional (2D) and three-dimensional (3D) structure retrieval systems with various filters and molecular descriptors. The web services API also provides researchers with functionalities to programmatically manipulate, search, and analyze the data.

Quantitative Structure-Activity Relationship(QSAR) Study of New Fluorovinyloxycetamides

  • Jo, Du Ho;Lee, Seong Gwang;Kim, Beom Tae;No, Gyeong Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.388-394
    • /
    • 2001
  • Quantitative Structure-Activity Relationship (QSAR) have been established of 57 fluorovinyloxyacetamides compounds to correlate and predict EC50 values. Genetic algorithm (GA) and multiple linear regression analysis were used to select the descriptors and to generate the equations that relate the structural features to the biological activities. This equation consists of three descriptors calculated from the molecular structures with molecular mechanics and quantum-chemical methods. The results of MLR and GA show that dipole moment of z-axis, radius of gyration and logP play an important role in growth inhibition of barnyard grass.

Prediction Acidity Constant of Various Benzoic Acids and Phenols in Water Using Linear and Nonlinear QSPR Models

  • Habibi Yangjeh, Aziz;Danandeh Jenagharad, Mohammad;Nooshyar, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2007-2016
    • /
    • 2005
  • An artificial neural network (ANN) is successfully presented for prediction acidity constant (pKa) of various benzoic acids and phenols with diverse chemical structures using a nonlinear quantitative structure-property relationship. A three-layered feed forward ANN with back-propagation of error was generated using six molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The polarizability term $(\pi_1)$, most positive charge of acidic hydrogen atom $(q^+)$, molecular weight (MW), most negative charge of the acidic oxygen atom $(q^-)$, the hydrogen-bond accepting ability $(\epsilon_B)$ and partial charge weighted topological electronic (PCWTE) descriptors are inputs and its output is pKa. It was found that properly selected and trained neural network with 205 compounds could fairly represent dependence of the acidity constant on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network was applied for prediction pKa values of 37 compounds in the prediction set, which were not used in the optimization procedure. Squared correlation coefficient $(R^2)$ and root mean square error (RMSE) of 0.9147 and 0.9388 for prediction set by the MLR model should be compared with the values of 0.9939 and 0.2575 by the ANN model. These improvements are due to the fact that acidity constant of benzoic acids and phenols in water shows nonlinear correlations with the molecular descriptors.

Multi-Shape Retrieval Using Multi Curvature-Scale Space Descriptor (다중 곡률-단계 공간 기술자를 이용한 다중형상 검색)

  • Park, Sang Hyun;Lee, Soo-Chahn;Yun, Il-Dong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.962-965
    • /
    • 2008
  • 2-D shape descriptors, which are vectors representing characteristics of shapes, enable comparison and classification of shapes and are mainly applied to image and 3-D model retrieval. Existing descriptors have limitations that they only describe shapes of single closed contours or lack in precision, making it difficult to be applied to shapes with multiple contours. Therefore, in this paper, we propose a new shape descriptor called Multi-Curvature-Scale Space that can be applied to shapes with multiple contours. Specifically, we represent the topology of the sub-contours in the multi-contour along with Curvature-Scale Space descriptors to represent the shapes of each sub-contours. Also, by allowing the weight of each component to be controlled when computing the distance between descriptors the weight, we deal with ambiguities in measuring similarity between shapes. Results of various experiments that prove the effectiveness of proposed descriptor are presented.

A Study of the Influence of Choice of Record Fields on Retrieval Performance in the Bibliographic Database (서지 데이터베이스에서의 레코드 필드 선택이 검색 성능에 미치는 영향에 관한 연구)

  • Heesop Kim
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.35 no.4
    • /
    • pp.97-122
    • /
    • 2001
  • This empirical study investigated the effect of choice of record field(s) upon which to search on retrieval performance for a large operational bibliographic database. The query terms used in the study were identified algorithmically from each target set in four different ways: (1) controlled terms derived from index term frequency weights, (2) uncontrolled terms derived from index term frequency weights. (3) controlled terms derived from inverse document frequency weights, and (4) uncontrolled terms based on universe document frequency weights. Su potable choices of record field were recognised. Using INSPEC terminology, these were the fields: (1) Abstract. (2) 'Anywhere'(i.e., ail fields). (3) Descriptors. (4) Identifiers, (5) 'Subject'(i.e., 'Descriptors' plus Identifiers'). and (6) Title. The study was undertaken in an operational web-based IR environment using the INSPEC bibliographic database. The retrieval performances were evaluated using D measure (bivariate in Recall and Precision). The main findings were that: (1) there exist significant differences in search performance arising from choice of field, using 'mean performance measure' as the criterion statistic; (2) the rankings of field-choices for each of these performance measures is sensitive to the choice of query : and (3) the optimal choice of field for the D-measure is Title.

  • PDF