• Title/Summary/Keyword: Desaturase

Search Result 151, Processing Time 0.023 seconds

Production of Gamma-Linolenic Acid in Pichia pastoris by Expression of a Delta-6 Desaturase Gene from Cunninghamella echinulata

  • Wan, Xia;Zhang, Yinbo;Wang, Ping;Huang, Fenghong;Chen, Hong;Jiang, Mulan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1098-1102
    • /
    • 2009
  • Gamma-linolenic acid (GLA, C18:3 ${\Delta}^{6,9,12}$) is synthesized by a delta-6 fatty acid desaturase using linoleic acid (LA, C18:2 ${\Delta}^{9,12}$) as a substrate. To enable the production of GLA in the conventional yeast Pichia pastoris, we have isolated a cDNA encoding the delta-6 fatty acid desaturase from Cunninghamella echinulata MIAN6 and confirmed its function by heterogeneous expression in P. pastoris. Sequence analysis indicated that this cDNA sequence has an open reading frame of 1,404 bp, which encodes a 52 kDa peptide of 468 amino acids. This sequence has 64% identity to the previously reported delta-6 fatty acid desaturase from Rhizopus oryzae. The polypeptide has a cytochrome b5 domain at the N-terminus including the HPGG motif in the heme-binding region, as reported for other delta-6 fatty acid desaturases. In addition, this enzyme differs from other desaturases by the presence of three possible N-linked glycosylation sites. Analysis of the fatty acid composition demonstrated the accumulation of GLA to the level of 3.1% of the total fatty acids. Notably, the amounts of ginkgolic acid (C17:1) and palmitic acid (C16:0) were increased from 1.3% to 29.6% and from 15% to 33%, respectively. These results reveal that the modification of the fatty acid biosynthetic pathway by genetic manipulation in order to produce specific polyunsaturated fatty acids in P. pastoris is a promising technique.

Minimum Structural Requirements of R-phenoxy Substituents for Herbicidal Evaluation of O-(2-phenoxy)ethyl-N-aralkylcarbamate Analogues against Phytoene Desaturase (Phytoene Desaturase에 대한 O-(2-Phenoxy)ethyl-N-aralkylcarbamates 유도체의 제초성 평가를 위한 R-phenoxy 치환기들의 구조적인 요건)

  • Choi, Won-Seok;Lee, Jae-Whang;Hwang, Seung-Woo;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.1
    • /
    • pp.72-77
    • /
    • 2010
  • The minimum structural requirements of R-phenoxy substituents for herbicidal evaluation of O-(2-(R)-phenoxy)-ethyl-N-aralkylcarbamate (1-15) analogues against phytoene desaturase (PDS) based on the three dimensional quantitative structure-activity relationships (3D-QSARs: CoMFA and CoMSIA) were studied quantitatively. The correlativity and predictability ($r^2_{cv.}=0.753$ and $r^2_{ncv.}=0.964$) of the CoMFA 1 model were higher than those of the rest models. The PDS inhibitory activities from the optimized CoMFA 1 model were depend upon the steric field (44.0%), electrostatic field (36.3%), and hydrophobic field (19.6%) of O-(2-(R)-phenoxy)ethyl-Naralkylcarbamate analogues. From the CoMFA contour maps on the structure of the most active compound (5), if it has the steric favor at meta-, para-position on the phenoxy ring, the negative charge favor in meta-position and positive charge favor in the outside part of para-position, the inhibitory activity will be predicted to increase. Also, if ortho-, para-position, and outside of phenoxy ring are hydrophilic favor, and meta-position is hydrophobic favor, it is predicted that the inhibitory activity against PDS will be able to increase.

Effects of Conjugated Linoleic Acid Supplement on the Composition of Fatty Acids, Expressions of delta-5 Desaturase (D5D) and Fatty Acid Desaturase2 (FADS2) Genes in Mice (식이지방에 첨가한 Conjugated Linoleic Acid가 지방산 조성, delta-5 Desaturase(D5D)와 Fatty Acid Desaturase2(FADS2) 유전자 발현에 미치는 영향)

  • Hwang, Yun-Hee;Kang, Keum-Jee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.10
    • /
    • pp.1279-1286
    • /
    • 2007
  • We investigated the effects of conjugated linoleic acid (CLA) on the fatty acid composition in the plasma and liver, and the expressions of delta-5 desaturase (D5D) and fatty acid desaturase2 (FADS2) genes in ICR male mice using two different sources of fats in the diets. The experimental groups were divided into four groups: beef tallow (BT) and fish oil (FO), BT with CLA supplementation (BTC), and FO with CLA supplementation (FOC) groups. Ten mice in each group were fed with the experimental diets for 4 weeks. All mice were fed experimental diets containing 12% of total dietary fat (w/w) either with or without 0.5% CLA (w/w). Fatty acid compositions were analyzed in the plasma and liver using gas chromatography. The levels of D5D and FADS2 expression were analyzed by RT-PCR in the liver The results showed that CLA participates competitively with C18:2 in the elongation and desaturation processes, leading to significant increase in the levels of C20:4 and C22:6 in BTC group (p<0.05). The expression levels of D5D and FADS2 were higher in BT and BTC group than those of FO and FOC group. In particular, the expression of D5D gene was greatly upregulated in BTC group. Furthermore, the conversion ratios from C18:2 to C20:4 in the liver were higher in BTC group than those in other groups. Thus our results suggest that increased expressions of DSD and FADS2 genes may be responsible for the enhanced CLA effects on the desaturation in the BT containing saturated fatty acids rather than the FO rich in n-3 PUFA.

Fermentation Process Development of Recombinant Hansenula polymorpha for Gamma-Linolenic Acid Production

  • Khongto, B.;Laoteng, K.;Tongta, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1555-1562
    • /
    • 2010
  • Development of the strain and the fermentation process of Hansenula polymorpha was implemented for the production of ${\gamma}$-linolenic acid ($GLA,\;C18:3{\Delta}^{6,9,12}$), an n-6 polyunsaturated fatty acid (PUFA) that has been reported to possess a number of health benefits. The mutated ${\Delta}^6$-desaturase (S213A) gene of Mucor rouxii was expressed in H. polymorpha under the control of the methanol oxidase (MOX) promoter. Without the utilization of methanol, a high-cell-density culture of the yeast recombinant carrying the ${\Delta}^6$-desaturase gene was then achieved by fed-batch fermentation under glycerol-limited conditions. As a result, high levels of the ${\Delta}^6$-desaturated products, octadecadienoic acid ($C18:2{\Delta}^{6,9}$), GLA, and stearidonic acid ($C18:4{\Delta}^{6,9,12,15}$), were accumulated under the derepression conditions. The GLA production was also optimized by adjusting the specific growth rate. The results show that the specific growth rate affected both the lipid content and the fatty acid composition of the GLA-producing recombinant. Among the various specific growth rates tested, the highest GLA concentration of 697 mg/l was obtained in the culture with a specific growth rate of 0.08 /h. Interestingly, the fatty acid profile of the yeast recombinant bearing the Mucor ${\Delta}^6$-desaturase gene was similar to that of blackcurrant oil, with both containing similar proportions of n-3 and n-6 essential fatty acids.

Inhibition of Sphingolipid Metabolism Enhances Resveratrol Chemotherapy in Human Gastric Cancer Cells

  • Shin, Kyong-Oh;Park, Nam-Young;Seo, Cho-Hee;Hong, Seon-Pyo;Oh, Ki-Wan;Hong, Jin-Tae;Han, Sang-Kil;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.470-476
    • /
    • 2012
  • Resveratrol, a chemopreventive agent, is rapidly metabolized in the intestine and liver via glucuronidation. Thus, the pharmacokinetics of resveratrol limits its efficacy. To improve efficacy, the activity of resveratrol was investigated in the context of sphingolipid metabolism in human gastric cancer cells. Diverse sphingolipid metabolites, including dihydroceramides (DHCer), were tested for their ability to induce resveratrol cytotoxicity. Exposure to resveratrol ($100{\mu}M$) for 24 hr induced cell death and cell cycle arrest in gastric cancer cells. Exposure to the combination of resveratrol and dimethylsphingosine (DMS) increased cytotoxicity, demonstrating that sphingolipid metabolites intensify resveratrol activity. Specifically, DHCer accumulated in a resveratrol concentration-dependent manner in SNU-1 and HT-29 cells, but not in SNU-668 cells. LC-MS/MS analysis showed that specific DHCer species containing C24:0, C16:0, C24:1, and C22:0 fatty acids chain were increased by up to 30-fold by resveratrol, indicating that resveratrol may partially inhibit DHCer desaturase. Indeed, resveratrol mildly inhibited DHCer desaturase activity compared to the specific inhibitor GT-11 or to retinamide (4-HPR); however, in SNU-1 cells resveratrol alone exhibited a typical cell cycle arrest pattern, which GT-11 did not alter, indicating that inhibition of DHCer desaturase is not essential to the cytotoxicity induced by the combination of resveratrol and sphingolipid metabolites. Resveratrol-induced p53 expression strongly correlated with the enhancement of cytotoxicity observed upon combination of resveratrol with DMS or 4-HPR. Taken together, these results show that DHCer accumulation is a novel lipid biomarker of resveratrol-induced cytotoxicity in human gastric cancer cells.

Identification of the SNP (Single Necleotide Polymorphism) of the Stearoyl-CoA Desaturase (SCD) Associated with Unsaturated Fatty Acid in Hanwoo (Korean Cattle)

  • Oh, Dong-Yep;Lee, Yoon-Seok;Yeo, Jung-Sou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.757-765
    • /
    • 2011
  • Fatty acid composition of beef intramuscular tissue is an important trait because high proportions of mono-unsaturated fatty acid are related to favorable beef flavor. In this study, we investigated the effects of genetic factors, such as stearoyl-CoA desaturase (SCD), on beef carcass traits, including fatty acid composition, in the Hanwoo. Analysis of fatty acids in Hanwoo was performed using a breed raised in Gyeonbuk province (n = 395). Compared to the homozygote, the GA, CT, and CT genotypes of exon 5 in the SCD polymorphism showed a higher content of oleic acid (p<0.05) and higher contents of mono-unsaturated fatty acid (p<0.05) and marbling scores (p<0.05) in intramuscular fat. Results of haplotype analysis showed a significant presence of unsaturated fatty acids and marbling score in the $ht1^*ht2$ and $ht2^*ht2$ groups (p<0.05). Furthermore, haplotype effects more powerful than a single gene were also observed. These ht1 and ht2 types also showed a significant difference in unsaturated fatty acids and marbling score, affecting beef flavor in the Hanwoo groups. Therefore, it can be inferred that the ht1 and ht2 types might be valuable new markers for use in improvement of Hanwoo.

Identification and Heterologous Expression of a ${\Delta}4$-Fatty Acid Desaturase Gene from Isochrysis sphaerica

  • Guo, Bing;Jiang, Mulan;Wan, Xia;Gong, Yangmin;Liang, Zhuo;Hu, Chuanjiong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1413-1421
    • /
    • 2013
  • The marine microalga Isochrysis sphaerica is rich in the very-long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA, $C20:5{\omega}-3$) and docosahexaenoic acid (DHA, $C22:6{\omega}-3$) that are important to human health. Here, we report a functional characterization of a ${\Delta}4$-fatty acid desaturase gene (FAD4) from I. sphaerica. IsFAD4 contains a 1,284 bp open reading frame encoding a 427 amino acid polypeptide. The deduced amino sequence comprises three conserved histidine motifs and a cytochrome b5 domain at its N-terminus. Phylogenetic analysis indicated that IsFad4 formed a unique Isochrysis clade distinct from the counterparts of other eukaryotes. Heterologous expression of IsFAD4 in Pichia pastoris showed that IsFad4 was able to desaturate docosapentaenoic acid (DPA) to form DHA, and the rate of converting DPA to DHA was 79.8%. These results throw light on the potential industrial production of specific polyunsaturated fatty acids through IsFAD4 transgenic yeast or oil crops.

Characterization of Carotenoid Biosynthetic Pathway Using Viviparous Mutant Embryos in Maize ( Zea mays L. )

  • Lee, Byung-Moo
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 1998
  • Carotenoid compounds in embryos of wild-type(WT) and viviparous mutants of maize(Zea mays L.) were analyzed using high performance liquid ehromatography (HPLC) with a photodiode array detector. Zeaxanthin accumulates in WT embryos as the major carotenoid. Phytoene accumulates in vp2 and vp5. Phytofluene in w3 and ${\xi}$-carotene in the vp9 mutant embryos. This indicates that the vp2 and vp5 mutants impair phytoene desaturase from 15-cis-phytoene to 15-cis-phytofluene. The w3 mutant has neither an isomerase from 15-cis-phytofluene to all-trans-phytofuene nor phytofluene desaturase from phytofluene to ${\xi}$-carotene. The vp9 mutant does not have the ${\xi}$-carotene desaturase from ${\xi}$-carotene to lycopene. Our analysis shows that the terminal carotenoid. ${\gamma}$-carotene(${\beta},{\Psi}$-carotene), accumulates in the vp7 mutant embryos. The ${\varepsilon}$-carotene(${\varepsilon},{\varepsilon}$-carotene), a product of ${\delta}$-carotene(${\varepsilon},{\Psi}$-carotene) in some plants, however, has not been found in maize embryos. The vp7 mutant impairs a cyclization step from ${\gamma}$-carotene to both ${\beta}$-carotene and ${\alpha}$-carotene. We suggest that monocyclic ${\gamma}$-carotene is the sole precursor of both bicyclic ${\beta}$-carotene(${\beta},{\beta}$-carotene) and ${\alpha}$-carotene(${\beta},{\varepsilon}$-carotene) in maize.

  • PDF

Developmental Relationship of Unsaturated Fatty Acid Composition and Stearoyl-CoA Desaturase mRNA Level in Hanwoo Steers' Muscle

  • Lee, Seung-Hwan;Yoon, Du-Hak;Choi, Nag-Jin;Hwang, Soo-Han;Cheong, Eun-Young;Oh, Sung-Jong;Cheong, Il-Cheong;Lee, Chang-Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.562-566
    • /
    • 2005
  • This study was conducted to investigate the developmental relationship between fatty acid composition in different lipid fractions and stearoyl-CoA desaturase (SCD) gene expression in steer muscles during growth. Twenty Hanwoo steers were used at 6, 12, 18, 24 and 30 months of age. Fatty acid composition and SCD mRNA level were analyzed. In the total lipid fraction, developmental profiles of C18:1, as the product of SCD enzyme, and SCD mRNA level were significantly increased between 6 months and 12 months of age. During this period, the percentage of C18:1 increased from 31.9% to 49.5% in the total lipid. The increased C18:1 level was maintained until 30 months of age within the range of 44.8- 49.9%. In contrast, the C18:0 composition decreased with age and this decrease was compensated by the increase of the C18:1. However, the sum of C18:0 and C18:1 was changed before and after 12-month old by a 20% increase. Unlike the C18 fatty acids, the C16 fatty acids such as C16:0 and C16:1 did not show a consistent change with age in steers' muscle. On the other hand, C18:2 proportion as a major polyunsaturated fatty acid in muscle was significantly reduced from 21.1% at 6 months of age to 4.4% at 12-months old and then this reduced level was maintained until 30 months within the range of 7.4-11.4%. As in the C18:1 composition during early stages, a 2-fold significant increase was observed in the $\Delta^9$-desaturase index of C18 fatty acid as a measure of SCD activity, but not in that of C16 fatty acid. Also, the steady-state level of SCD mRNA reached a peak at 12 months of age. Thus, the positive relationship between the C18:1 composition and the $\Delta^9$-desaturase (SCD enzyme) index of C18 fatty acid or SCD mRNA level was demonstrated during growth, but the negative relationship between the C18:2 composition and the above three indices was demonstrated at the same time, indicating that the sharp induction of SCD mRNA may be closely related to the dramatic reduction of C18:2, which is known as a suppressor of SCD gene expression during growth.

Cloning of a $\Delta5$ desaturase from Thraustochytrium sp. 26185 and Functional Expression in Pichia Pastoris (Thraustochytrium sp. 26185 균주에서의 $\Delta5$ desaturase 유전자 클로닝 및 Pichia pastoris 내에서의 기능적 발현)

  • Chung Tae-Ho;Lee Su-Jin;Oh Hyo-Jeong;Kim Geun-Joong;Hur Byung-Ki
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.93-99
    • /
    • 2005
  • Polyunsaturated fatty acids, that is PUFAs, are important constituents of membranes particularly found in the retina and central nervous system. In microorganism-based PUFAs biosynthesis, the genus Thraustochytrids is well evaluated for their potential as a promising candidate in the practical production of PUFAs, such as AA and DHA. In this study, we attempted to optimize a method of total nucleic acid extraction from this microorganism as a preliminary experiment. Using the extracted nucleic acid and degenerated primers for direct PCR, we isolated a $\Delta5$ desaturase gene that contained 1320-nucleotide and encoded 439 amino acids. This gene exhibited an expected function, when expressed in P. pastoris in the presence of appropriate exogenous substrate, as an evidence for $\Delta5$ desaturase activity (conversion of DGLA to AA). These results and information could provide a basis for the construction of engineered strains suitable for the practical production of PUFAs.