• Title/Summary/Keyword: Desalination Plant

Search Result 112, Processing Time 0.024 seconds

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템의 기초연구)

  • Hyun, Jun-Ho;Kim, Yeong-Min;Jung, Jin-Ho;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.204-209
    • /
    • 2011
  • According to the environment report of UN, korea was classified as potable water shortage countries. Approximately 71% of the Earth's surface is covered by ocean. However, it is difficult to use for industry of residential purpose without a certain processing. The development of solar and waste-heat used absorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar and waste-heat used and adsorption desalination system was introduced. The design is divided into three parts. First, the evaporator for the vaporization of the top water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basicresearch, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar and waste energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times.

  • PDF

Numerical study on the flow characteristics of horizontal tube bundle (Tube-bundle형 열교환기의 액막 유동에 관한 시뮬레이션)

  • Kim, Pil-Hwan;Choi, Du-Youl;Woo, Ju-Sik;Jeong, Hyo-Min;Chung, Han-Shik;Kim, Kyeong-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1256-1261
    • /
    • 2009
  • Seawater amounts to 70% of the earth and represents a quite unlimited resource for the production of fresh water by desalination processes and for the extraction of dissolved salts present in it. Recently, the falling film evaporation has increased in interest as an efficient method for seawater desalination system. In the desalination system, the flow characteristics of the falling film is very important issue to make highly efficient system. So, this study is taken to investigate numerically the falling film thickness on the inlet Renold Number ranges are 400 to 700. Numerical simulations are performed using FLUENT6.3.26, a commercial CFD code.

  • PDF

A study on the development of MVR desalination plant and its performance analysis (MVR해수담수화플랜트의 개발 및 성능에 관한 연구)

  • Kim, Yeongmin;Chun, Wongee;Kim, Dongkook
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • MVR evaporation is a method of pressurizing the evaporating steam to raise its temperature with an electric compressor instead of burning fuel and reusing the heat source through the embraced heat exchanger to minimize energy use. MVR desalination system with wind power uses varying wind power instead of stable electricity and can flexibly control the volume of fresh water production. The present study introduces the design, construction and operation of a MVR desalination system of 30ton/day capacity. Experimental results, MVR compression ratio is higher than 1.5, temperature difference of the main heat exchanger is $5{\sim}7^{\circ}C$. This value shows the same performance as the designed value.

Experimental Study on Thermal Performance of Palte-type Fresh Water Generator for applying Solar Energy Desalination System (태양에너지 해수담수화시스템에의 적용을 위한 판형 해수담수기의 열성능에 관한 실험적 연구)

  • Kim, Jeong-Bae;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.35-41
    • /
    • 2007
  • To demonstrate the desalination system, the demo-plant was scheduled to be installed. The system was planned to use solar thermal collector as heat source and PV as electricity source. For the design of the desalination demonstration system, firstly the solar thermal system would be well designed from the result between the supplied heat into the fresh water generator and the fresh water yield. The generator for demonstration system was chosen as the fresh water generator of the single stage and effect with plate-type heat exchanger using low pressure evaporation method. The test facility for the tests to reveal the relationship between the fresh water yield and the supplied heat flow rate was designed and manufactured. The maximum fresh water yield of two fresh water generators applied in this study was designed as 1.5 Ton/day. The parameters relating with the performance of fresh water generator are known as sea water inlet temperature, hot water inlet temperature, and hot water flow rate. Through the experiments, this study firstly showed detail operation characteristics of the generator and designed the solar thermal system for the demonstration system.

Design and Application of Thermal Vapor Compressor for Multi-Effect Desalination Plant (열증기압축기 설계와 MED 담수설비에의 적용)

  • Park, Il-Seok;Park, Sang-Min;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1670-1675
    • /
    • 2004
  • A thermal vapor compressor in which the subsonic/supersonic flow appears simultaneously, has been accurately designed through the CFD analysis for the various shape parameters such as the primary nozzle shape, converging duct shape. mixing tube diameter, and so on. The performance of the developed thermal vapor compressor has been experimentally verified to be installed in a Multi Effect Desalination(MED) plant as an important element, In this paper, the experimental results for Various boundary conditions(motive pressure, suction pressure, and discharge pressure) are presented in comparing with CFD results. The two results show a good agreement with each other within 3.5 % accuracy with regard to the entrainment ratio.

  • PDF

Biological Improvement of Reclaimed Tidal Land (I) Desalination Effects of Saline Soil by the Growth of certain Halophytes (해안간척지 토양의 생물학적 토성개량에 관한 연구 (제1보) 수종 염생식물에 의한 간 탁지토양의 제염효과에 대하여)

  • 홍순우
    • Journal of Plant Biology
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 1969
  • Korea has a lots of margin for security of farm land from her coastal region. The area of saline soil may be reached about 10% of present farm land if the reclamation works are finished. This paper was conducted as a part of studying the possibilities of desalination of saline soil through the experiment of some halophytes. The halophytes in this works were Salicornia herbacea L., Suaeda glauca Bunge, chenopodium acuminatum Willd, and Scirpus triquerter L. Of the above halophytes, Salicornia was proved the most effective plant for desalination of saline soil referring to the following results; 1) The seasonal uptake of chloride by Salicornia was the highest of all. However, the general tendencies of all plants showed a decrease on August. 2) Salinity of soil showed the lowest value on the site where Salicornia was grwon densely. Comparing the other sites grouped by age of saline soil with the above site, the salinity of rice-paddy (10 years after reclamation) is similar to those of the site wehre Salicornia were as well as the 50 cm below the surface soil. 3) The maximum water holding capacity of surface soil appeared in the site of Salicornia, but in 50 cm below the surface, the maximum water holding capacity are almost on equat terms having no connection with the age of saline soil. Soil pH, other chemical compositions such as organic matter, magnesium, potassium, phosphorous, and nitrate were determined to elucidate the relationship between the changes of soil properties and chemical uptakes by certain halophytes. It is assumed that the above chemical compositions are frequently affected by the factors such as coastal circulation of salts, exchangeable base, microbial growth, climatic conditions, and irrigation of water.

  • PDF