• Title/Summary/Keyword: Desalinated water

Search Result 15, Processing Time 0.019 seconds

Study on OTEC for the Production of Electric Power and Desalinated Water (전력 및 담수생산을 위한 해양온도차발전에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.124-130
    • /
    • 2010
  • Ocean Thermal Energy Conversion(OTEC) power plants have been examined as a viable option for supplying clean energy. This paper evaluated the thermodynamic performance of the OTEC Power system for the production of electric power and desalinated water. The results show that newly developed fluids such as R32, R125, R143a, and R410A that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. Overall cycle efficiency of open cycle is the lowest value of 3.01% because about 10% of the gross power is used for pumping out non-condensable gas. Also, the hybrid cycle is an attempt to combine the best features and avoid the worst features of the open and closed cycles. The overall cycle efficiency of hybrid cycle is 3.44% and the amount of desalinated water is 0.0619 kg/s.

Secondary Concentration Technology of Brine from Membrane Seawater Desalination Process with Electrodialysis (전기투석을 이용한 분리막 담수화 공정 배출 농축수의 이차 농축기술)

  • Moon, Jeong-Ki;Park, Kwang-Seok;Yoo, Yoon-Ki;Yun, Young-Ki
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • This study is about the secondary concentration technology using electrodialysis process for minimum discharge and maximize recovery ratio from seawater desalination by reverse osmosis process. The experimental method adopted the constant voltage driving method and, concentrated/desalination volume capacity ratio changes, voltage changes and electrolyte types. Multi-ion membrane is used, aiming to derive conditions to minimize the TDS concentration of desalination water, to minimize the volumes of secnodary concentraion water and minimizing the power efficiency. The results of this study are as follows. The optimal ratio of concentraion/desalination volume is 1:5, the final TDS concentration of desalinated water is 5.32g/l, the final secnodary concentrated water salinity is 17.07% and electric energy demands of desalinated water is $16.74kWh/m^3$.

Applicability of Mineral-controled Water from Deep Ocean Water for Industrial Utilization (해양심층수 수질조정수의 산업소재 적용성 평가)

  • Kim H.J.;Moon D.S.;Cho S.Y.;Lee Y.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.23-28
    • /
    • 2004
  • Various merchandises have appeared in recent markets of mineral water, beverage, food and cosmetics etc. These are almost manufactured by adding raw seawater, desalinated water, brine or salt from Deep Ocean Water(DOW), and it intimated desalination and mineral extraction are key techniques for DOW business. This study aims to verify the functional performance of mineral-controlled water produced by the basic methods which were proposed by authors for industrial purposes. This water revealed the possibility of the radical scavenging effects and moisturizing capability.

  • PDF

Analysis of combined cycle for desalination process and $CO_2$ refrigeration system (담수화 공정과 이산화탄소 냉동 시스템의 복합사이클 해석)

  • 신지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • The characteristics of a combined cycle for the production of fresh water and air-conditioning was analyzed. The combined cycle consisted of an open water cycle and a $CO_2$ refrigeration cycle interlinked in the pre-heater of the water cycle, which is the condenser of the refrigeration cycle. The oprating conditions and criteria for the fresh water production and air-conditioning was described and their effects on the total system were evaluated. The results indicated an increase of desalinated water with the increase of hot water temperature, which resulted in the decrease of cooling capacity of the refrigeration system in this study. However, the energy saving correspond to the pre-heating of the water cycle by the condensing of the refrigeration system shows the avilable advantage of the proposed cycle as compared to other single purpose plants for desalination.

  • PDF

A study on boron removal for seawater desalination using the combination process of mineral cluster and RO membrane system

  • Cho, Bong-Yeon;Kim, Hye-Won;Shin, Yee-Sook
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.285-289
    • /
    • 2015
  • Complicated and expensive seawater desalination technology is a big challenge in boron removal process. Conventional seawater desalination process of coagulation utilized for pre-treatment is difficult to remove boron. Boron can be removed more effectively in Reverse Osmosis (RO) process than any other processes. In this study, a coagulant with the name Mineral Cluster was examined its boron removal ability. Boron removal efficiency of Mineral Cluster depended on pH value and Mineral Cluster dosage. Desalination process combines the pre-treatment process with Mineral cluster diluted at the ratio of 1:2500 and the RO membrane process. The original sea water could be desalinated to drinking water quality, 1 mg/L, without any pH adjustments. Therefore, if the Mineral cluster is added without any other chemicals for adjusting pH, the desalination process would be much safer, efficient and economical.

Application of Molecular Simulation in Reverse Osmosis Membrane Research (역삼투압 분리막 연구에서의 분자 전산모사 응용)

  • Lee, Tae Kyung;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.551-556
    • /
    • 2022
  • The desalinated water obtained by the water treatment process based on the membrane is attracting a lot of attention as a promising technology that can solve the global water shortage problem. Reverse osmosis membrane-based desalination, one of the most widely used desalination processes, is a technology that desalinates abundant seawater on Earth, thus having great potential in the desalination industry. To improve the performance of the desalination process, it is necessary to understand the reverse osmosis mechanism of the membrane at the atomic/molecular level. In this review, we introduce molecular simulation, which plays an important role in material research today, and the roles of computational simulation at the atomic/molecular level in the development of reverse osmosis membranes.

Cost analysis of water supply and development of desalination vessel as a drought response (가뭄 시 광역자치단체 별 물 비용 분석 및 해상 이동형 담수화 플랜트 이용 대응 방안 연구)

  • Yang, Hayeon;Koo, Jaewuk;Hwang, Taemun;Jeong, Seongpil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • Due to global climate change, Korea is experiencing flooding and drought severely. It is hard to manage water resources because intensive precipitation during short periods and drought are commonly occurred in Korea, recently. Severe drought occurred in 2015 and 2017 in the islands, and coastal and inland areas in Korea, and the citizens experienced decreased water supply and emergency water service by using bottled water. Therefore, the Korean government provided additional governmental funds such as the grant of drought disaster. In this study, we tried to calculate the cost of water for drought response based on the cost of tap water for the regional local governments in Korea and the grant of drought disaster by the Ministry of the Interior and Safety in Korea, etc. The estimated costs of water for drought responses in coastal and inland areas which have a chance to apply alternative water sources such as brackish or seawater desalination and water reuse in Korea were higher than in other areas in Korea. Additionally, as the novel approach of drought response, the 300 ㎥/day-scale desalination vessel was suggested to provide desalinated water for the islands in Korea. The estimated expenses of water supply for the target island areas (Sinan-gun and Jindo-gun) by the desalination vessel was lower than those by emergency water service by using bottled water.

'Brine Management through brine mining of trace metals' for developing Secondary sources of nuclear fuel

  • T.L. Prasad
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.674-680
    • /
    • 2023
  • The brine and seawater are important and largely untapped sources of critical trace metals and elements. The coupling of selective recovery of trace metals from seawater/brine with desalination plants gives an added advantage of energy credits to desalination plants and as well as reduce the cost of desalinated water. In this paper, status review on recovery of important trace metals and other alkali metals from seawater is presented. The potential of Indian desalination plants for recovery of trace metals, based on recovery ratio of 0.35 is also highlighted. Studies carried out by the process based on adsorption using Radiation Induced Grafted (RIG) polymeric adsorbents and then fractional elutions are presented. The fouling factors due to bio fouling and dirt fouling have been estimated for various locations of interest through field trails. The pay loader in the form of compact Contactor Assembly with minimum pressure drop, for loading specially designed radiation grafted sorbent in leaflet form has been briefed, as required for plant scale facility. The typical conceptual process design details of farm assembly of project CRUDE are described.

Corrosion control technology in water pipes by adjusting the corrosivity of drinking water : effect and impact of the lime dispersion system (수돗물 부식성 제어를 통한 수도관 부식방지기술: 석회수 분산화장치를 이용한 미네랄 공급 효과와 영향 분석)

  • Han, Keum-Seok;Park, Young-Bok;Kim, Seong-Jae;Kim, Hyen-Don;Choi, Young-June;Park, Ju-Hyun;Woo, Dal-sik;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • Corrosion inhibitors including calcium hydroxide have been used to prevent corrosion in the pipes for tap water supply. The corrosion index (i.e., Langelier Index) differs by area and water quality. The corrosion indices of the areas studied differed by more than 2.0. The 'homogenized' calcium hydroxide was added to the treated water at the K water treatment plant, in order to increase the value of the corrosion index and the concentration of calcium. As the result, the concentration of calcium was increased while the turbidity and pH changed little. The corrosion rate of the tap water with the 'homogenized' calcium hydroxide could be slowed down pretty much. The results suggested that the technology of 'homogenization' of calcium hydroxide can applied to tap water and desalinated water to prevent corrosion in water pipes even in corrosive pipes.

THE EFFECT OF MOUTH RINSE PRODUCTS CONTAINING DEEP SEA WATER (해양심층수를 이용한 구강청정제의 효과)

  • Kim, Seon-Ah;Jang, Hae-Jin;Yoo, Yung-Geun;Chu, Yong-Shik;Park, Yang-Ho;Park, Jun-Woo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.6
    • /
    • pp.601-608
    • /
    • 2007
  • The aim of this study was to evaluate the effect of mouthrinse products containing deep sea water. We used original deep sea water(DSW) and processed deep sea water desalinated by reverse osmosis at one time(DDW-1), by reverse osmosis at two times(DDW-2) and concentrated by reverse osmosis(CDW). We made 2 kinds of mouthrinse products containing CDW and other agents for smell and taste and one product without deep sea water. The negative control was distilled water. In vivo study, the dental plaque index scores and the gingival index scores were reduced after 4 weeks mouthrinsing three times daily with 4 kinds of deep sea water and 3 kinds of mouthrinse products(p<0.05). The pH of dental plaque in 1 minute after mouthrinsing was not higher than 5.5 in all solutions, but the pH in 20 minutes after mouthrinsing was higher than 5.7 in DSW, CDW and 3 kinds of products which had higher mineral contents. In vitro study, the mouthrinse solutions containing the higher mineral contents were also the more effective in reduction of methyl mercaptan which is one of the causes of halitosis. The 2 kinds of products containing deep sea water killed Streptococcus mutans(ATCC 25175) in culture plates in one minute. These results indicate the usability of deep sea water in mouthrinses for oral hygiene management.