• Title/Summary/Keyword: Derived Air Concentration

Search Result 121, Processing Time 0.028 seconds

Risk Assessment of Volatile Organic Compounds for Vapor Intrusion Pathway Using Various Estimation Methodology of Indoor Air Concentration (다양한 실내 침투 휘발물질 농도 예측 방법을 이용한 토양오염물질의 실내흡입 위해성평가)

  • Jung, Jae-Woong;Nam, Taekwoo;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.51-65
    • /
    • 2015
  • Indoor inhalation of vapors intruded into buildings is an important exposure pathway in volatile organic compoundscontaminated sites. Site-specifically measured indoor air concentration is preferentially used for risk assessment. However, when indoor air concentration of VOC is not measured, the indoor air concentration needs to be estimated from soil concentration or measured soil gas concentration of the VOC. Some risk assessment guidance (e.g., Korea Ministry of Environment (KMOE) and American Society for Testing and Materials (ASTM) International guidance) estimate the indoor air concentration from soil concentration while other guidances (e.g., United States Environmental Protection Agency (USEPA) and Dutch National Institute for Public Health (RIVM)) estimate it from measured soil gas concentration. This study derived indoor inhalation risks of intruded benzene in two benzene-contaminated residential areas with four different risk assessment guidances (i.e., KMOE, USEPA, ASTM, and Dutch RIVM) and compared the derived risks. The risk assessment results revealed that indoor air estimation approach from soil concentration could either underestimate (when the contaminant is not detected in soil) or overestimate (when the contaminant is detected in soil even at negligible concentration) the indoor air inhalation risk. Hence, this paper recommends to estimate indoor air concentration from soil gas concentration, rather than soil concentration. Discussions about the various indoor air concentration estimation approaches are provided.

Practical Radiation Safety Control: (I) Application of Annual Limit on Intake and Derived Air Concentration (방사선안전관리 실무: (I) 연간섭취한도와 유도공기중농도의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.234-236
    • /
    • 2013
  • Some of radioactive contamination is unavoidable in the facilities using the unsealed radioactive material. The primary purpose of radioactive contamination control in the workplace with contamination concern is the effects from the potential intake of radioactive material into the body. This paper provides procedures to estimate the level of internal exposure for the worker based on the conservative assumptions and simple calculations. They consist of two processes; to calculate air concentration of radioactive material and annual intake by inhalation with contaminated air and to compare each of them to Derived Air Concentration and Annual Limit on Intake mentioned in the related notification. The procedures are applicable to make a decision on practical requirements for monitoring air contamination and internal exposure of worker as follows; needs for measurement of air contamination and internal exposure and acquisition of information on the design of the ventilation system.

A Numerical Study of the Air Quality Inside Automobiles According to the HVAC System Operating Conditions (HVAC 작동특성에 따른 자동차 실내 공기질 평가에 관한 수치해석적 연구)

  • Yoon, Seonghyun;Seo, Jinwon;Choi, Yunho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.299-309
    • /
    • 2014
  • When using an automotive heating, ventilation, and air conditioning (HVAC) system, we can obtain fresh outside air while maintaining the interior vehicle temperature. In this study, a correction equation considering experimental data for automotive indoor air leakage is defined to simulate the ratio of fresh air to recirculated air in the automobile cabin. With this correction equation, numerical results are compared with experimental data and validated. The $CO_2$ concentration in the automotive cabin is evaluated by considering various boarding conditions and mass flow rates of the HVAC system. The $CO_2$ concentration model derived in this study is expected to be used to control the effective air conditioning and become a basic research tool for automotive air quality control system development.

Mathematical Modelling of Biofilter for Waste Air Biotreatment (폐가스 처리에 대한 바이오필터의 수학적 모델링)

  • Im, Gwang-Hui
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.550-560
    • /
    • 1999
  • There have been many research efforts on biofilter modeling including Ottengraf et al. who derived a model equation for the concentration profile of pollutants(e.g., VOCs) in the biolayer and solved their outlet concentration of the waste gas stream through biofilter. However, for most of research works done so far, the effects to explain the effect of adsorption of organic particles to medium(i.e., adsorbent) have been ignored. In this work biofilter modeling accompanying process lumping has been proposed and the theoretical effect of adsorption property of the medium, on the biofilter performance of eliminating organic components in waste gas stream, is intensively discussed.

  • PDF

Fuzzy algorithm of Automatic control for dissolved oxygen in Activated sludge aeration tank (활성슬러지 폐수처리장 폭기조 DO제어를 위한 퍼지 제어 알고리즘 연구)

  • 손건태;김성덕;고주형
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.533-538
    • /
    • 1999
  • Fuzzy algorithm of automatic control for dissolved oxygen(DO) concentration in the aeration tank of an activated sludge process is proposed. Among variables repirometry and air flowrate are selected as significant input factors and the relationship with DO is estimated using a multiple regression model. The DO concentration and the amount of repirometry are fuzzified and the fuzzy rule base are determined. Using the fuzzy algorithm, the change of amount of air flowrate are determined and the change of amount of DO is derived.

  • PDF

Derived Limits for Radiological Protection Against ionizing Radiation Based on ICRP-60 Recommendations

  • Jang, Si-Young;Lee, Byung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.350-360
    • /
    • 2000
  • In Korea, the dose limits are reduced and are set at the ICRP-60 iimits. However, derived limits tabulated as MPC in air and water are still specified in Notice No.98-12. There are some discrepancies between the primary dose limits and MPCs in air and water. Therefore, in order to accept ICRP-60 recommendations fully, derived limits such as ALI, DAC, ECL for radiological protection against ionizing radiation based on ICRP-60 recommendations were calculated using modified methods of those of 10 CFR part 20, dose limits and committed effective dose coefficients of the Basic Safety Standards of the IAEA. The derived limits in this study were also compared with those prescribed in 10 CFR part 20 as well as MPCs of Notice No. 98-12 in order to analyze the impact of implementing derived limits on nuclear facilities. ECLs in air and water for the control of radioactive discharge into the environment in this study are shown to have lower values (i.e. more conservative), for most part, than those in Notice No. 98-12. Especially, for uranium elements, ECLs in water are approximately a magnitude in the order of two lower than those in Notice No.98-12.

  • PDF

Synthesis and Analysis of Nanosized TiO2 Particles Using a Tube Furnace (튜브 전기로를 이용한 TiO2 나노입자의 합성 및 특성 분석)

  • 배귀남;현정은;이태규;정종수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.411-419
    • /
    • 2004
  • Titania particles are widely used as a photocatalyst to treat various contaminants in air and water. Titania particles were formed by vapor-phase oxidation of titanium tetraisopropoxide (TTIP) in a tube furnace between 773 and 1,273 K. The effect of process variables such as furnace temperature, flow rate of carrier air, and flow rate of sheath air on powder size and phase characteristics was investigated using a scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size distribution of synthesized titania particles was characterized with mode diameter and peak concentration. The mode diameter ranging from 20 to 80 nm decreased with increasing flow rates of sheath air and carrier air, and increased with increasing furnace temperature. The peak concentration increased with increasing flow rates of sheath air and carrier air The best synthetic condition for high production rate can be derived from the experimental data set represented by mode diameter and peak concentration. The crystal structure of synthesized titania particles was found to be anatase phase, ensuring high photocatalytic potential.

A Suggestion of indoor CO2 concentration prediction equation by operating KTX flap in Tunnel Sections (터널구간 운행시 KTX 플랩 작동에 따른 CO2 농도 예측식 제안)

  • So, Jin-Sub;Yoo, Seong-Yeon;Kim, Ick-Hee
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2052-2057
    • /
    • 2010
  • In December 2006, the Ministry of Environment in Korea established the "Indoor Air Quality Management Guidelines in Public Transportation." As the items of the guideline, $CO_2$(Carbon dioxide) and PM10(Particulate matter). Therefore, the air quality inside the train is supposed to be ruled by this guideline. This study calculated the increase or decrease rate of the $CO_2$ concentration by using the data measured in accordance with flap operation. In case of flap close or open, the calculated $CO_2$ concentration variation was 6.32ppm/min. The $CO_2$ concentration prediction equation was derived from the general equation and the actual measured value are compared with the predicted $CO_2$ concentration suggested during the KyungBu high speed railway construction. The predicted value show good agreement with the measured data.

  • PDF

Planning of Apartment Units for Improving Natural Ventilation Performance based on the Analysis of Indoor Pollutant Concentrations (오염농도 분포 해석을 통한 공동주택의 자연환기성능 향상을 위한 평면계획)

  • Kim, Jiyoeng;Lee, Seung-Hee;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.5 no.3
    • /
    • pp.41-48
    • /
    • 2005
  • Before occupation of an apartment housing, the builders are required to inform the test result of IAQ to the public. However, there is no simplified method to predict IAQ before measurement of pollutant concentration. In this study, a simplified way of predicting IAQ based on the distribution of indoor pollutant concentration is proposed. 7 different cases of air change rate have been simulated through CFD analysis to get the distribution ratio of each pollutant material and then simplified functions were used with CRIAQ1 values derived from CFD simulation to evaluate by comparing the influence of each material in the indoor pollutant concentration. Again, a lot of efforts which can improve the indoor air quality have been performed. Materials used in indoor space are labeled with their pollutant emission level. Installation of ventilation system in residential buildings will be regulated by a building codes sooner or later. But it is important to understand the fact that layout of walls, location or size of openings will influence the indoor air flow and pollutant concentration. And location of emitting material influences to indoor air pollutants distribution. But until now there is few recognition and consideration of these factors. Therefore, in this paper the effects of these factors is proved and some kind of guideline is made for designers after a comparison of typical apartment floor plan and a new type plan with their average pollutant concentration and its distribution of each room. CFD(Computational Fluid Dynamics) program was used to show the indoor air flow and pollutant concentration distribution. For this purpose, a typical $100m^2$ apartment floor plan was chosen as a case study model and several alternatives were reviewed to improve the IAQ performance. The simulation took place in the condition of natural ventilation through windows.

Estimation of Bio-Monitoring for PCBs Concentration in Air Using Plant (식물을 이용한 대기 중 PCBs의 농도 예측 평가)

  • 여현구;최민규;천만영;김태욱;선우영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.265-274
    • /
    • 2002
  • The concentrations of polychlorinated biphenyls (PCBs) in air and plant were measured every other week at Hankyong University located in Ansung, Kyoung-ki province from July to November of 1999. The predicted PCB concentrations in air derived from measured Morus allba were compared with ambient measurement data. This was necessary to test the possibility of using the two equations incorporating Riederer's and Bacci's bioconcentration factors (BCFs) based on the octanol-air partition coefficient (Ksub/oa/) to predict the air-plant equilibrium of PCBs. Ratios of calculated to measured PCB concentrations in air were 2.4 (1.24~4.36), 2.7 (0.17~7.96) using Riederer's and Bacci's equations, respectively Regression analysis between PCBs calculated by Riederer's equation and PCBs directly measured in air, showed correlation ($R^2$= 0.90). However, slope of regression between calculated and directly measured PCB concentrations was above 1. The results thus suggest that calculated PCBs were overestimated comparing with direct measurements. Bio-monitoring using Morus allba may have possibilities in predicting PCBs concentration in air with a further extension of air-plant equilibrium research.