• Title/Summary/Keyword: Derivatization/Extraction

Search Result 76, Processing Time 0.023 seconds

Part-Per-Trillion level determination of Alkylphenols, Chlorophenols and Bisphenol A using GC/MS-SIM in Tap Water

  • Kim, Hyub
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.149-149
    • /
    • 2003
  • A new technique is proposed for the determination of alkylphenols, chlorophenols and bisphenol A in tap water. The sample preparation consists of a solid phase extraction (SPE) of alkylphenols, chlorophenols and bisphenol A from a water sample with XAD-4 and subsequent conversion to isobutyloxycarbonyl (isoBOC) derivatives or tert.-butyldimethylsilyl (TBDMS) derivatives for sensitive analysis with the GC/MS-SIM mode. The recoveries were 86.6∼105.2 % (isoBOC derivatization) and 97.6∼484.5 % (TBDMS derivatization), respectively. The limit of quantitation of alkylphenols, chlorophenols and bisphenol A for SIM were 0.001∼0.050 $\mu\textrm{g}$/l (isoBOC derivatization) and 0.003∼0.050 $\mu\textrm{g}$/l (TBDMS derivatization). The SIM responses were linear with the correlation coefficient varying 0.9755∼0.9981 (isoBOC derivatization), and 0.9908∼0.9996 (TBDMS derivatization). The derivative methods and their application to tap water samples will be disscussed.

  • PDF

GC/MS-SIM for the Determination of Alkylphenols, Chlorophenols and Bisphenol A in Paper Materials

  • Kim, Hyub
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.145-145
    • /
    • 2003
  • A method for the determination of alkylphenols, chlorophenols and bisphenol A in paper materials using GC/MS-SIM has been developed. Eleven endocrine disrupting chemicals (EDCs) of phenols in paper samples were extracted with acetonitrile. Also, solid-phase extraction (SPE) with XAD-4 and subsequent conversion to isobutoxycarbonyl derivatives or tert.-butyldimethylsilyl derivatives for sensitive analysis with the selected ion-monitoring (SIM) mode. The recoveries were 82.4∼108.8 % by area ratio of pheranthrene-d$\sub$10/ vs bisphenol A d$\sub$l6/. (isoBOC derivatization and TBDMS derivatization) The SIM responses were linear with the correlation coefficient varying 0.9717∼0.9995 (isoBOC derivatization), and 0.9842∼0.9980 (TBDMS derivatization). The range of concentrations was respectively, 0.95∼l.44 ng/g in 2,4-dichlorophenol, 1.01∼1.17 ng/g in t-butylphenol, 2.17∼5.84 ng/g in pentachlorophenol, 12.68∼14.88 ng/g in nonylphenol and 30.84∼153.72 ng/g in bisphenol A.

  • PDF

Part-Per-Trillion Level Determination of Alkylphenols, Chlorophenols and Bisphenol A using GC/MS-SIM in Tap Water Samples (GC/MS-SIM 방법에 의한 수돗물 중 알킬페놀, 플로로페놀과 비스페놀 A의 ppt 정량)

  • Kim, Hyub
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.199-208
    • /
    • 2003
  • A new technique was proposed for the determination of alkylphenols, chlorophenols and bisphenol A in tap water samples. The sample preparation consists of a solid phase extraction (SPE) of alkylphenols, chlorophenols and bisphenol A from a water sample with XAD-4 and subsequent conversion to isobutyloxycarbonyl (isoBOC) derivatives or tert-butyldimethylsilyl (TBDMS) derivatives for sensitive analysis with the CC/MS SIM mode. The recoveries were 86.6 ∼ 105.2% (isoBOC derivatization) and 97.6∼484.5% (TBDMS derivatization), respectively. The limit of quantitation of alkylphenols, chlorophenols and bisphenol h for SIM were 0.001∼0.050 $\mu\textrm{g}$/1 (isoBOC derivatization) and 0.003∼0.050 $\mu\textrm{g}$/1 (TBDMS derivatization). The SIM responses were linear with the correlation coefficient varying 0.9755∼0.9981 (isoBOC derivatization), and 0.9908∼0.9996 (TBDMS derivatization). When these methods were applied to tap water samples, the range of concentrations were 22.8∼31.3 ng/1 in 2,4-dichlorophenol, 28.6∼70.3 ng/1 in pentachlorophenol, 15.2∼17.4 ng/1 in t-butylphenol, 10.8∼13.2 ng/1 in t-octylphenol and 17.6∼36.3 ng/l in bisphenol A, respectively.

Analysis of Haloacetic Acids in Drinking Water by Direct Derivatization and Headspace-SPME Technique with GC-MS (Handspace Solid Phase Microextraction 방법에 의한 HAAs 분석에 관한 연구)

  • Cho, Deok-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.638-648
    • /
    • 2004
  • In many drinking water treatment plants, chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of haloacetic acid (HAAs). In this study, headspace solid-phase microextraction (HS-SPME) was studied as a possible alternative to liquid-liquid extraction for the analysis of HAAs in drinking water. The method involves direct derivatization of the acids to their methyl esters without methyl tert-butyl ether (MTBE) extraction, followed by HS-SPME with a $2cm-50/30{\mu}m$ divinylbenzene/carboxen/polydimethylsiloxane fiber. The effects of experimental parameters such as selection of SPME fiber, the volume of sulphuric acid and methanol, derivatization temperature and time, the addition of salts, extraction temperature and time, and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The $2cm-50/30{\mu}m$-divinylbenzene/carboxen/polydimethylsiloxane fiber, sulphuric acid of 1ml, methanol of 3ml, derivatization temperature of $50^{\circ}C$ derivatization time of 2hrs, sodium chloride salt of 10g, extraction time of 30 minutes, extraction temperature of $20^{\circ}C$ and desorption time of 1 minute at $260^{\circ}C$ were selected as the optimal experimental conditions for the analysis of HAAs. The linearities ($r^2$), relative standard deviations (%RSD) and limits of detection (LOD) for HAAs were 0.9978~0.9991, 1.1~9.8% and $0.05{\sim}0.2{\mu}g/l$, respectively.

Fast Determination of Multiple-Reaction Intermediates for Long-Chain Dicarboxylic Acid Biotransformation by Gas Chromatography-Flame Ionization Detector

  • Cho, Yong-Han;Lee, Hye-Jin;Lee, Jung-Eun;Kim, Soo-Jung;Park, Kyungmoon;Lee, Do Yup;Park, Yong-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.704-708
    • /
    • 2015
  • For the analysis of multiple-reaction intermediates for long-chain dicarboxylic acid biotransformation, simple and reproducible methods of extraction and derivatization were developed on the basis of gas chromatography with flame ionization detector (GC-FID) instead of mass spectrometry. In the derivatization step, change of the ratio of pyridine to MSTFA from 1:3 to 9:1 resulted in higher peak intensity (p = 0.021) and reproducibility (0.6%CV) when analyzing 32 g/l ricinoleic acid (RA). Extraction of RA and ω-hydroxyundec-9-enoic acid with water containing 100 mM Tween 80 showed 90.4-99.9% relative extraction efficiency and 2-7%CV compared with those with hydrophobic ethyl acetate. In conclusion, reduction of the pyridine content and change of the extraction solvent to water with Tween 80 provided compatible derivatization and extraction methods to GC-FID-based analysis of longchain carboxylic acids.

Identification of Nandrolone and its Metabolite 5α-Estran-3β, 17α-Diol in Horse Urine after Chemical Derivatization by Liquid Chromatography Tandem Mass Spectrometry

  • Dubey, Saurabh;Beotra, Alka
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.90-97
    • /
    • 2017
  • Androgenic anabolic steroids (AASs) are synthetic derivatives of testosterone with a common structure containing cyclopentanoperhydrophenanthrene nucleus. Their use enhances the muscle building capacity and is beneficial during performance. The AASs are one of the most abused group of substances in horse doping. Liquid chromatography tandem mass spectrometry ($LC/MS^n$) has been successfully applied to the detection of anabolic steroids in biological samples. However, the saturated hydroxysteroids viz: nandrolone, $5{\alpha}-estrane-3{\beta}$, $17{\alpha}-diol$ exhibit lower detection responses in electrospray ionisation (ESI) because of their poor ionisation efficiency. To overcome this limitation pre-column chemical derivatization has been introduced to enhance their detection responses in $LC-ESI-MS^n$ analysis. The aim of present study was to develop a sensitive method for identification and confirmation of nandrolone and its metabolite in horse urine incorporating pre-column derivatization using picolinic acid. The method consists of extraction of targeted steroid conjugates by solid phase extraction (SPE). The eluted steroid conjugates were hydrolysed by methanolysis and free steroids were recovered with liquid-liquid extraction. The resulting steroids were derivatized to form picolinoyl esters and identification was done using LC-ESI-MS/MS in positive ionization mode. The picolinated steroid adduct enhanced the detection levels in comparison to underivatized steroids.

Sensitive Determination of Alkylphenols, Chlorophenols, and Bisphenol A using GC/MS-SIM in Paper Materials (기체 크로마토그래피/질량분석기를 이용한 종이류 중 알킬페놀류, 클로로페놀류 및 비스페놀 A 정량)

  • Kim, Hyub;Kim, Jin-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.1
    • /
    • pp.45-55
    • /
    • 2003
  • The alkylphenols, chlorophenols and bisphenol A were determined by gas chromatography/mass spectrom-etry-selected ion monitoring (GC/MS-SIM) mode followed by two work-up methods for comparison; isoBOC derivatization method and TBDMS derivatization method. Eleven phenols in paper samples were extracted with acetonitrile. Also, solid -phase extraction (SPE) with XAD -4 and subsequent conversion to isobutoxycarbonyl derivatives or tert.-butyldimethylsilyl derivatives for sensitive analysis with the selected ion-monitoring (SIM) mode. The SIM responses were linear with the correlation coefficient varying 0.9717 ∼ 0.9995 (isoBOC derivatization), and 0.9842 ∼ 0.9980 (TBDMS derivatization). The recoveries were 82.4 ∼ 108.8%) by area ratio of phenanthrene -d$\_$10/ vs bisphenol A-d$\^$l6/. (isoBOC derivatization and TBDMS derivatization) The range of concentrations was respectively, 0.95 ∼ 1.44 ng/g in 2,4-dichlorophenol, 1.01 ∼ 1.17 ng/g in t-butylphenol,2.17 ∼ 5.84 ng/g in pentachlorophenol, 12.68 ∼ 14.88 ng/g in nonylphenol and 30.84 ∼ 153.72 ng/g in bisphenol A.

Determination of Ursodeoxycholic Acid in Crude Drug Formulations by HPLC and SPE Using Selective Pre-column Derivatization with 2-Bromoacetyl-6-methoxynaphthalene (2-Bromoacetyl-6-methoxynaphthalene을 형광유도체화제로 HPLC와 SPE를 이용한 생약제제 중 Ursodeoxycholic acid의 정량)

  • 진창화;임수희;이기진;심형섭;조의환;염정록
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.392-397
    • /
    • 2002
  • A simple and sensitive high performance liquid chromatographic method to quantitate ursodeoxycholic acid in crude drug pharmaceuticals was investigated. Ursodeoxycholic acid react with 2-bromoacetyl-6-methoxynaphthalene (Br-AMN) in the presence of triethylamine to form highly fluorescent derivative. The derivatization procedure was performed at 7$0^{\circ}C$ and completed within 30 min. The optimal wavelength of the fluorescence detector are λ$_{ex}$=300 nm and λ$_{em}$ = 460 nm. The LOD of the ursodeoxycholic acid was 25 ng/mι based on the S/N =3, and the LOQ was 80 ng/mι based on S/N = 10. Crude drug pharmaceuticals pretreated by solid phase extraction (Sep-pak $C_{18}$ cartridge) which were shown very good separation and recovery values for the compound.d.

Determination of 11 Phenolic Endocrine Disruptors using Gas Chromatography/Mass Spectrometry-Selected Ion Monitoring in Five Selected Wastewater Influents

  • Kim, Hyub
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.216-223
    • /
    • 2008
  • An efficient method for the simultaneous determination of eleven phenolic endocrine-disrupting chemicals (EDCs) present in wastewater influent samples was described. The 11 phenolic EDCs including alkylphenols, chlorophenols, and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) following two work-up methods for comparison; isobutoxycarbonyl (isoBOC) derivatization and tert-butyldimethylsilyl (TBDMS) derivatization. The wastewater influent samples containing the 11 EDCs were adjusted to pH 2 with $H_2SO_4$ and then cleaned up with n-hexane. Next, they were subjected to solid-phase extraction (SPE) with XAD-4 resin and subsequently converted to isoBOC or TBDMS derivatives for sensitivity analysis with gas chromatography/mass spectrometry-selected ion monitoring (GC/MSSIM). Following isoBOC derivatization and TBDMS derivatization, the recoveries were 86.6-105.2% and 97.6-142.7%, the limits of quantitation (LOQ) for the 11 phenolic EDCs for SIM was 0.001-0.050 ng/mL and 0.003-0.050 ng/mL, and the SIM responses were linear with the correlation coefficient varying by 0.9717-0.9995 and 0.9842-0.9980, respectively. When these methods were applied to five selected wastewater influent samples, for isoBOC derivatization and TBDMS derivatization the ranges of concentration detected were 0.2-99.6 ng/mL and 0.4-147.4 ng/mL, respectively.

Rapid Gas Chromatographic Profiling and Screening of Acidic Non-Steroidal Antiinflammatory Drugs in Biological Samples

  • Kim, Kyoung-Rae;Shin, You-Jin;Shim, Won-Hee;Myung, Seoung-Won
    • Archives of Pharmacal Research
    • /
    • v.17 no.3
    • /
    • pp.175-181
    • /
    • 1994
  • The solid-phase extraction (SPF) with subsequent tert-butyldimethylsilyl (TBDMS) derivatization was investigated for the rapid profiling and screening of various carboxylated non-steroidal antiinflammatory drugs (NSAIDs) simultaneously in biological fluid samples. Compared to the conventional SPF in adsorption mode using Chromosorb 102, Chromosorb 107, Carbopak B and Thermosorb, the SPF in partition mode using Chromosorb P as the adsorbent, and ethyl acetate/methylene chloride as the eluting solvents provided hightest overall recovenies of the NSAIDs from aqueous solutions with good precision. The solid-phase extracted NASIDs were silylated with N-methyl-N-(tert-butyldimethylsily)trifuoroacetamide to TBDMS derivatives and directly analyzed by capillary gas chromatography and gs chromatography-mass spectrometry. The usefulness of the present method was examined for the profilling and screening of saliva, serum and urine samples for various NSAIDs simultaneously.

  • PDF