• Title/Summary/Keyword: Derating design

Search Result 15, Processing Time 0.029 seconds

Derating design approach of aluminum electrolytic capacitor for reliability improvement (알루미늄 전해 커패시터의 신뢰성 향상을 위한 Derating 설계 연구)

  • Min, Dae-June;Kim, Jae-Jung;Son, Young-Kap;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1712-1717
    • /
    • 2007
  • This paper presents a derating design approach for reliability improvement of an aluminum electrolytic capacitor. The capacitor, usually mounted in a printed circuit board, is used to stabilize the circuit. The main failure mechanism of interest is dry-up of the electrolyte that is mainly caused by two stresses-temperature and voltage. The lifetime under these stresses is modeled as a function of these stresses and time using accelerated life testing. Quantitative variation in the lifetime, according to variations in these stresses, is investigated to perform the derating design of the capacitor so that the stress levels are selected to achieve required reliability measures for reliability improvement. Moreover, sensitivity analysis shows which stress would be a more important factor determining the lifetime.

  • PDF

Derating Design for Improving System Reliability by Using a Probabilistic Approach (시스템 신뢰성 향상을 위한 확률적 부하경감설계)

  • Son, Young-Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.743-749
    • /
    • 2010
  • This paper proposes a derating design method for improving system reliability by using a probabilistic approach. In the proposed design, the focus is upon system levels in determining derated levels of stresses such as temperature and current, unlike recent design approaches that focus on component levels. System reliability is evaluated using component reliability metrics that are given as functions of time and unknown stresses; this evaluation is based on a series system-reliability model. The variation in stress, which was not considered in previous derating designs, is introduced in the present design to account for the uncertainty in both environmental and operating conditions at the customer' hands. Optimization problems for system reliability improvement are formulated and solved using FORM to determine the best derating design. An example of a derating design for an electrical system shows the details of the proposed method and its applicability to systems design for reliability improvement.

Derating design approach of LED for reliability improvement (LED(Light Emitting Diode)의 부하경감 설계)

  • Kim, Byung-Nam;Kim, Jae-Jung;Kang, Weon-Chang;Son, Young-Kap;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1760-1765
    • /
    • 2007
  • This paper shows a derating design approach for LED reliability improvement. The LED is widely used in display devices or circuits. The main failure of interest is defined as 100% reduction of the light output intensity of LED resulting from corrosion due to stresses, i.e. temperature and humidity. The lifetime is varied according to the stress levels under where the LED operates so that correlation of the lifetime to these stress levels over time is modeled through accelerated life testings. A derating design approach to accomplish a required reliability level of LED is proposed to determine adequate the stress levels. In the approach, $B_{10}$ life, Failure rate, Sensitivity Analysis of LED are used as a reliability metric.

  • PDF

Derating Design Approach for a Regulator IC (레귤레이터 IC의 부하경감 설계)

  • Kim, Jae-Jung;Chang, Seog-Weon
    • Journal of Applied Reliability
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • This paper presents a derating design approach for reliability improvement of a regulator IC. The IC is usually used in SMPS. The main failure mechanism of interest is voltage drop due to the package delamination mainly caused by two stresses, i.e. temperature and current. The lifetime under stresses is modeled as a function of stresses and time using accelerating life testings. Quantitative and qualitative variation in lifetime according to stress variations are investigated using the modeled lifetime. Stress levels would be determined to achieve required reliability levels in the aspect of derating design for reliability.

  • PDF

Power Design of an S-Band Transmitter for KSLV-II with Derating (디레이팅을 고려한 한국형발사체 S-밴드 송신기 전원부 설계)

  • Kim, Seokkwon;Kim, Sung-Wan;Hong, Seung Hyun;Kim, Hyo Jong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.339-347
    • /
    • 2019
  • The power circuit design of an on-board S-band transmitter for KSLV-II with derating(operation of a component at less than its maximum rated specification to enhance reliability) is investigated. The power circuit of the transmitter consists of linear voltage regulators, DC/DC converters for regulating the DC supply, and diodes for reverse voltage protection. After analyzing the load current of the components, derating requirements are explored. Furthermore, power dissipation and junction temperature rise are considered with respect to the load current. The analysis is compared to the results from an engineering model of the transmitter. The temperature of the components is derated by >$40^{\circ}C$ in an environment where the ambient temperature is $+60^{\circ}C$, which is the acceptance test specification of high temperature.

A Study on Thermal Characteristics for Hand Carried Ultrasound System

  • Kim, Jong-Gu;Cho, Young-Jin;Kwack, Kae-Dal
    • Journal of Applied Reliability
    • /
    • v.9 no.2
    • /
    • pp.149-163
    • /
    • 2009
  • This paper intends to suggest a design to reduce the thermal load of a hand-carried ultrasound (HCU) system, with the aim of increasing the product life. To design ways to reduce the heat load, the surface temperatures of key parts of an HCU system were measured as the 4 system cooling fans, which have a direct relation to the system life, were operated normally. When the derating rate of 80% was applied while the fans of the HCU system were operated abnormally, it was observed that the key image processing parts exceeded the surface temperature (TC) with consideration to derating. Since the part surface temperature did not exceed the derated level when the regulated voltage was derated from 12V to 9V, it is expected to lower the operating voltage of the fans to 9V to increase the fan and HCU system lifetime by 1.8 times.

  • PDF

The Design Method of TR Module Based GaN for Satellite (실용위성 적용을 위한 GaN 기반 TR모듈 설계 기법)

  • Yang, Ho-Jun;Lee, Yu-ri;Cho, Seongmin;Yu, Kyungdeok;Kim, Jong-Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • TR module using in satellite must consider discriminative electrical and mechanical requirements compare to the one using in ground and aircraft system since not only the environment level of vibration and shock during the launch stage but also the level of radiation, vacuum and thermal variation from orbit environment are more severe than atmosphere condition. This paper describes the environmental conditions of launch and the orbit and, suggests design method of TR module applying GaN to satisfy the unique environmental requirements of satellite systems by especially focusing on parts selection, derating design, RF budget design, manufacturing process design, and thermal design of TR module.

A Study on the Reliability Prediction for Space Systems (우주 시스템의 신뢰성 예측에 관한 연구)

  • Yu, Seung-U;Lee, Baek-Jun;Jin, Yeong-Gwon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.227-239
    • /
    • 2006
  • Reliability prediction provides a rational basis for design decisions such as the choice between alternative concepts, choice of part quality levels, derating factors to be applied, use of proven versus state-of-the-art techniques, and other factors. For this reasons, reliability prediction is essential functions in developing space systems. The worth of the quantitative expression lies in the information conveyed with the numerical value and the use which is made of that information and reliability prediction should be initiated early in the configuration definition stage to aid in the evaluation of the design and to provide a basis for item reliability allocation (apportionment) and establishing corrective action priorities. Reliability models and predictions are updated when there is a significant change in the item design availability of design details, environmental requirements, stress data, failure rate data, or service use profile. In this paper, the procedure, selection of reliability data and methods for space system reliability prediction is presented.

  • PDF

Power Factor Correction Circuit For Inverter Air-Conditioner Using A Parallel Drive Method (병렬구동 방식을 이용한 인버터 에어컨용 역률제어회로)

  • 정용채;정윤철;권경안
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.9-12
    • /
    • 1998
  • In this paper, the power factor correction circuit using a parallel drive method is proposed so that the high power inverter air-conditioner with 3[ph] compressor motor may obtain the cost down and the improved performance. The adequate design procedures are presented to reduce the material costs by eliminating the power factor improving LC filter and derating output capacitor and inverter switches. Using the determined components, the prototype circuit with 6[kW] power consumption is built and tested to verify the operation of the proposed circuit.

  • PDF

Design of PWM Inverter-Mounted Induction Motor System (PWM 인버터 탑재형 유도전동기 시스템 설계)

  • Shin, Woo-Seok;Yang, Soon-Bae;Lee, Don-Si;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.325-329
    • /
    • 1994
  • This paper describes a compact design and control method of PWM inverter-mounted induction motor especially designed for reducing the size and weight considerably, which may be applied to the speed control system such as air conditionr,conveyor and textile mill, etc. To obtain higher power density without derating performance, a new mechanical configuration unifying the inverter circuit and motor is proposed. Also, through the use of current minimization control method during V/f operation it is possible to reduce the size of heat-sink related to the losses of power circuit. By the proposed design method, a compact inverter-mounted induction motor system of 1Hp is built and its validity can be verified through the experimental results.

  • PDF