시청자에게 입체감과 몰입감을 줄 수 있는 3차원 영상의 제작을 위해서는 장면의 색상 영상과 함께 깊이 정보가 필요하다. 일반적으로 장면의 깊이를 측정하는 깊이 센서에서 획득된 깊이 영상은 매우 작은 해상도를 가진다. 따라서 색상 영상과 함께 3차원 영상 제작에 이러한 깊이 영상을 사용하기 위해서는 저해상도 깊이 영상의 업샘플링 기술이 필요하다. 본 논문에서는 깊이 불연속 정보를 이용하여 저해상도 깊이 영상을 업샘플링하는 방법을 설명한다. 깊이 영상을 업샘플링할 때 가장 민감하게 다루어야 할 깊이 불연속 부분을 고해상도 색상과 저해상도 깊이 영상으로부터 찾아낸다. 그리고 깊이 불연속 부분을 고려하여 깊이 영상 업샘플링을 위한 에너지 함수를 모델링하고, 신뢰 확산(belief propagation) 방법을 이용하여 해상도가 확대된 깊이 영상을 획득한다. 제안하는 방법은 필터 기반이나 에너지 함수 기반의 다른 방법들보다 우수한 성능을 나타내었다.
본 논문은 저해상도의 깊이맵을 고해상도의 깊이맵으로 변환하는 새로운 방법인 거리 변환 기반의 양측 업샘플링 기법을 제안한다. 제안하는 방법은 깊이맵의 거리변환 값에 따라 공간 도메인 가중치 함수를 조절하기 때문에 에지의 선명도를 유지하면서 깊이맵의 해상도를 증가시킨다. 이를 위해, 제안하는 방법은 거리 변환 단계, 공간 가중치 조절 단계, 영상 보간 단계를 거친다. 다양한 실험 깊이 맵을 통한 실험에서 제안하는 방법이 기존의 양측 업샘플링 방법보다 출력 깊이맵의 화질 관점에서 성능이 좋아짐을 확인했다.
깊이맵은 3D 입체영상의 생성을 위해 중요한 요소이다. 하지만 깊이 카메라를 이용하여 획득한 깊이맵들은 낮은 해상도를 갖는 단점이 있기 때문에 이를 고해상도로 변환하는 연구들이 활발하게 진행되고 있다. 이러한 연구들은 일반적으로 PSNR, Sharpness Degree, Blur Metric 등과 같은 객관적인 평가방법으로 성능을 검증해왔다. 이러한 평가방법 이외에 DIBR로 가상시점(virtual view)을 생성하여 주관적으로 평가하는 연구도 있으나, 입체영상을 생성하여 깊이맵 업샘플링의 성능을 분석하는 것은 많지 않다. 본 논문에서는 다양한 깊이맵 업샘플링 방법들을 이용하여 생성된 입체영상의 주관적 평가와 업샘플링 방법의 객관적 평가 결과의 상관관계 및 선형회귀법을 이용하여 관련성을 분석한다. 실험결과에서는 에지 PSNR이 시각적 피로도와의 상관관계가 가장 높고, Blur Metric은 가장 낮다는 것을 보여준다. 또한 선형회귀에서는 최적의 입체영상을 얻을 수 있는 객관적 평가의 가중치를 구하고, 기존 또는 새로운 업샘플링 알고리즘의 3D성능을 예측할 수 있는 공식을 보여준다.
요즘 들어, 3차원 콘텐츠의 수요는 지속적으로 증가하고 있다. 3차원 콘텐츠의 품질은 해당 장면의 깊이 정보에 큰 영향을 받기 때문에 정확한 깊이 정보를 얻는 것이 매우 중요하다. 카메라와 객체 사이의 깊이 정보는 적외선 센서를 이용한 계산을 통해 직접 얻을 수 있다. 최근 들어, KINECT 카메라와 같이 카메라와 물체 사이의 거리를 적외선이나 광신호를 이용하여 직접 측정하는 Time-of-flight (ToF) 기술을 사용하는 깊이 측정 방법이 널리 사용되고 있다. 이러한 방법은 카메라와 객체 사이의 깊이 정보를 실시간으로 획득할 수 있다는 장점을 갖지만, 획득된 깊이맵에 잡음이 발생하고, 깊이맵의 해상도가 낮다는 단점을 갖는다. 최근 들어, 이런 문제를 해결하기 위해서 양방향 결합 업샘플링 방법 (JBU) 이나 잡음 제거 업샘플링 방법 (NAFDU) 과 같은 필터 기반의 방법이 제안되었다. 그러나 이러한 필터 기반의 업샘플링 방법은 업샘플링된 깊이맵에 색상영상의 질감이 복사되는 문제가 발생한다. 이 논문에서는 이러한 문제점을 해결하기 위해 고차 정규화항을 이용하여 에너지 함수를 만들고, 이를 최적화하여 깊이맵을 업샘플링 한다. 또한, 색상과 깊이맵의 경계 정보를 고려한 경계 가중치항을 추가하여 질감 복사 문제를 해결한다. 실험 결과, 제안하는 깊이맵 업샘플링 방법이 기존의 방법에 비해 깊이 정보의 품질은 유지하면서, 질감 복사 문제를 효과적으로 해결할 수 있음을 확인했다.
본 논문은 양방향 가중치를 이용하는 기존의 업샘플링 방법들에서 나타난 색상 텍스쳐 복사(color texture copy) 문제를 방지하기 위해 선택적 양방향 가중치와 라플라시안 함수를 이용한 색상 가중치를 제안한다. 제안하는 알고리즘은 먼저 3차 회선 보간법(bicubic interpolation)을 통해 높은 해상도의 깊이영상을 생성한다. 그 후 색상영상과 깊이영상의 주변 화소값 차이를 이용하여 색상 텍스쳐 영역을 추정한다. 만일 보간 된 화소가 색상 텍스쳐 영역에 속한다면 해당화소를 포함하는 $3{\times}3$ 영역의 화소들에 대한 거리정보와 깊이정보의 가중치를 구하고 경계 화소값 결정을 위한 비용계산을 수행한다. 반면에 색상 텍스쳐 영역에 포함되지 않는 화소는 깊이정보 가중치 대신 색상정보 가중치를 구하여 비용계산을 수행한다. 아홉 개의 화소에 대한 비용계산이 끝나면 가장 작은 경계 화소값 결정 비용을 가지는 화소 값을 결과영상의 화소값으로 정한다. 제안하는 알고리즘은 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.
본 논문은 자기 조직화 지도 기법을 기반으로 라이다 기반으로 생성된 깊이 맵과 컬러 이미지의 정보를 기반으로 고밀도 깊이 맵을 생성하는 방법을 제안한다. 제안하는 깊이 맵 업샘플링 방법은 라이다에서 취득되지 않은 공간에 대한 초기 깊이 예측 단계와 초기 깊이 필터링 단계로 구성된다. 초기 깊이 예측 단계에서는 두 장의 컬러 이미지에 대해 스테레오 매칭을 수행하여 초기 깊이 값을 예측한다. 깊이 맵 필터링 단계에서는 예측된 초기 깊이 값의 오차를 감소시키고자 예측 깊이 픽셀에 대하여 주변의 실측 깊이 값을 이용하여 자기 조직화 지도 기법을 수행한다. 자기 조직화 기법 수행 시 예측 깊이 픽셀과 실측 깊이 픽셀의 거리와, 각 픽셀에 대응되는 컬러 값의 차이에 따라 가중치를 결정한다. 본 논문에서는 성능 비교를 위하여 깊이 맵 업샘플링 방법으로 널리 사용되고 있는 양방향 필터 및 k-최근접 이웃 알고리즘과 비교를 진행하였다. 제안하는 방법은 양방향 필터 방법 및 k-최근접 이웃 알고리즘 대비 MAE 관점에서 각각 약 6.4%, 8.6%이 감소하였고 RMSE 관점에서 각각 약 10.8%, 14.3%이 감소하였다.
최근 비행시간 (Time-of-Flight, TOF) 원리에 기반한 깊이 카메라의 등장과 함께 저해상도 깊이 카메라와 고해상도 컬러 카메라로 이루어진 복합형 카메라 시스템 (Fusion Camera System) 이 각광을 받고 있다. 복합형 카메라 시스템에서 취득한 저해상도 깊이맵을 컬러 영상과 같은 영상 평면 (Image Plane) 에 위치시키고 같은 해상도를 가질 수 있게 하려면 카메라 보정 및 3차원 투영, 홀 (Hole) 채우기와 같은 일련의 전처리 과정이 필요하다. 그러나 전처리 과정을 거친 깊이맵은 깊이 카메라의 내부 특성, 카메라 보정의 부정확성 등에 의해 많은 오차를 가진다. 그러므로 본 논문에서는 오차가 많은 상황에서도 강건하게 동작하는 깊이맵 업샘플링 방법을 제안한다. 먼저, 전처리 과정을 통해 얻은 깊이 정보의 신뢰도를 컬러 영상과의 상관관계에 기반하여 측정한다. 그리고 낮은 신뢰도의 깊이 정보를 참조하지 않는 수정된 커널 회기법 (Kernel Regression)을 통해 깊이맵과 컬러 영상의 경계 정합을 수행하여 세밀한 깊이 표현이 가능한 고해상도 깊이맵을 형성한다. 제안하는 알고리즘은 깊이 정보의 신뢰도 정의와 그에 따른 참조를 통해 카메라 보정 결과가 부정확하더라도 높은 성능의 깊이맵 생성을 보장한다. 실험결과를 통해 기존의 깊이맵 업샘플링 기술보다 제안하는 방법이 더 정확한 깊이 정보를 제공하는 것을 확인할 수 있다.
깊이 영상은 물체와의 거리 정보를 가지고 있다. 이는 3D 정보를 구성하는데 중요한 역할을 한다. 보통 같은 시점에서 얻은 컬러 영상과 깊이 영상을 함께 사용한다. 그런데 하드웨어 기술의 한계로 인해 깊이 영상은 쌍을 이루는 컬러 영상에 비해 낮은 해상도를 갖는다. 따라서 일반적으로 깊이 영상을 사용할 때 영상의 해상도를 컬러 영상의 해상도에 맞게 업샘플링을 진행한 후 사용한다. 본 논문에서는 깊이 영상의 해상도를 높이기 위해 화소 값을 개선시키는 일반적인 방법이 아닌 화소의 위치를 이동시키는 방법을 제안한다. 제안하는 기법에서는 화소의 위치를 경계 주변에서 경계 중앙으로 이동시키며 이 과정을 여러 단계에 걸쳐 진행하여 블러된 영상을 복원한다. 실험 결과를 통해 제안하는 방법이 기존 방법들에 비해 정량적, 시각적 품질을 모두 개선시켰음을 알 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3217-3238
/
2018
In this paper, a depth image up-sampling method is put forward by using pixel classifying and jointed bilateral filtering. By analyzing the edge maps originated from the high-resolution color image and low-resolution depth map respectively, pixels in up-sampled depth maps can be classified into four categories: edge points, edge-neighbor points, texture points and smooth points. First, joint bilateral up-sampling (JBU) method is used to generate an initial up-sampling depth image. Then, for each pixel category, different refinement methods are employed to modify the initial up-sampling depth image. Experimental results show that the proposed algorithm can reduce the blurring artifact with lower bad pixel rate (BPR).
본 논문은 색상정보와 깊이정보 가중치를 이용한 깊이영상 업샘플링 방법을 제안한다. 제안하는 알고리즘은 먼저 양선형 보간법을 통해 높은 해상도의 깊이영상을 생성한다. 그 후 RGB 색상영상, HSV 색상영상, 깊이영상 등을 이용하여 공통경계 영역을 추정한다. 만일 보간 된 화소가 공통경계 영역에 속한다면 해당화소를 포함하는 $3{\times}3$ 영역의 화소들에 대한 색상정보와 깊이정보의 가중치를 구하고 경계 화소값 결정을 위한 비용계산을 수행한다. 그 후 가장 작은 경계 화소값 결정 비용을 가지는 화소 값을 결과영상의 화소값으로 정한다. 제안하는 알고리즘은 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.