Kim, Chang-Ick;Park, Jung-Woo;Lee, Jae-Ho;Hwang, Jenq-Neng
ETRI Journal
/
제29권3호
/
pp.353-362
/
2007
In this paper, we propose a novel unsupervised video object extraction algorithm for individual images or image sequences with low depth of field (DOF). Low DOF is a popular photographic technique which enables the representation of the photographer's intention by giving a clear focus only on an object of interest (OOI). We first describe a fast and efficient scheme for extracting OOIs from individual low-DOF images and then extend it to deal with image sequences with low DOF in the next part. The basic algorithm unfolds into three modules. In the first module, a higher-order statistics map, which represents the spatial distribution of the high-frequency components, is obtained from an input low-DOF image. The second module locates the block-based OOI for further processing. Using the block-based OOI, the final OOI is obtained with pixel-level accuracy. We also present an algorithm to extend the extraction scheme to image sequences with low DOF. The proposed system does not require any user assistance to determine the initial OOI. This is possible due to the use of low-DOF images. The experimental results indicate that the proposed algorithm can serve as an effective tool for applications, such as 2D to 3D and photo-realistic video scene generation.
We suggest an efficient Simultaneous Localization and 3D Polygon Map Building (SLAM) method with Kinect depth sensor for mobile robots in indoor environments. In this method, Kinect depth data is separated into row planes so that scan line segments are on each row plane. After grouping all scan line segments from all row planes into line groups, a set of 3D Scan polygons are fitted from each line group. A map matching algorithm then figures out pairs of scan polygons and existing map polygons in 3D, and localization is performed to record correct pose of the mobile robot. For 3D map-building, each 3D map polygon is created or updated by merging each matched 3D scan polygon, which considers scan and map edges efficiently. The validity of the proposed 3D SLAM algorithm is revealed via experiments.
Tire wear and defect are important factors for safe driving condition. These defects are generally inspected by some specialized experts or very expensive equipments such as stereo depth camera and depth gauge. In this paper, we propose tire safety vision inspector based on deep neural network (DNN). The status of tire wear is categorized into three: 'safety', 'warning', and 'danger' based on depth of tire tread. We propose an attention mechanism for emphasizing the feature of tread area. The attention-based feature is concatenated to output feature maps of the last convolution layer of ResNet-101 to extract more robust feature. Through experiments, the proposed tire wear classification model improves 1.8% of accuracy compared to the existing ResNet-101 model. For detecting the tire defections, the developed tire defect detection model shows up-to 91% of accuracy using the Mask R-CNN model. From these results, we can see that the suggested models are useful for checking on the safety condition of working tire in real environment.
We propose a partial occlusion removal method for computational integral imaging reconstruction (CIIR) based on the usage of the exemplar based inpainting technique. The proposed method is an improved version of the original linear inpainting based CIIR (LI-CIIR), which uses the inpainting technique to fill in the data missing region. The LI-CIIR shows good results for images which contain objects with smooth surfaces. However, if the object has a textured surface, the result of the LI-CIIR deteriorates, since the linear inpainting cannot recover the textured data in the data missing region well. In this work, we utilize the exemplar based inpainting to fill in the textured data in the data missing region. We call the proposed method the neighboring elemental image exemplar based inpainting (NEI-exemplar inpainting) method, since it uses sources from neighboring elemental images to fill in the data missing region. Furthermore, we also propose an automatic occluding region extraction method based on the use of the mutual constraint using depth estimation (MC-DE) and the level set based bimodal segmentation. Experimental results show the validity of the proposed system.
The purpose of this research paper is to segment seafood market and find the factor and process that divide the segment market. Cluster analysis and in-depth interview was performed to identify meaningful segment market. The result of the research found three segment market such as seafood integration familiarity group, domestic seafood familiarity group, seafood unfamiliarity group. Seafood integration familiarity group is active consumer that consume both domestic and imported seafood at home. This group have high preference and familiarity about seafood. Seafood familiarity group purchase imported seafood for the reason that imported seafood is cheaper than domestic seafood and have similar quality level. Domestic seafood familiarity group consume mostly domestic seafood and not purchase imported seafood for the reason that imported seafood have low quality and safety. This group have high preference and familiarity about seafood. Seafood unfamiliarity group is low preference group about seafood and seldom eat at home. This study found that the main factor that divide segment market is seafood familiarity that formed by experiencing seafood in youth and seafood familiarity is main factor that determine consumption degree of seafood at home.
증가형 MOS FET에서 강반저의 경우 드레인 전류는 모두 드리프트에 기인하여 흐르기 때문에 I-V모델링시 수직전계와 수평전계를 함께 고려하여야한다. 특히 게이트전압 인가시 발생되는 수직전계는 표면이동도에 영향을 크게 주고 이로 인해서 캐리어들의 정상적인 흐름이 저해되는데 본 논문에서 제안한 다중 box분할법에 의하여 반전층의 깊이를 구하여 이동도 모델에 영향을 크게 미치는 반전층 내에서의 수직전계를 수치해석하였다.
일반적으로 외부에서 획득되는 영상은 대기 중에 존재하는 먼지, 물방울, 연무, 안개, 연기 등에 의해 화질이 감쇠되고 결과적으로 대비도 감소와 색상의 왜곡 현상이 발생한다. 그리나 안개와 배경 사이에 내재된 모호성 때문에 배경으로부터 안개를 제거하는 작업은 결코 간단한 문제가 아니다. 본 논문에서는 단일 영상에서 비용함수로서 에지의 기울기를 이용한 그래프 기반 영역 분할 방법을 이용하여 안개 제거를 위한 새로운 방법을 제안한다. 우리는 장면을 깊이 관련 정보에 따라 여러 영역으로 분리하고 전역적인 안개값을 추정한다. 매체의 전달량은 그래프 기반 영역 분할 알고리즘의 임계 함수에 의해서 직접적으로 계산된다. 매체 전달량과 안개값이 계산되면 안개 모델식에 의해서 쉽게 안개가 제거된 영상을 복원할 수 있다. 그리고 안개 영상과 복원된 영상간의 에지의 기울기 비율을 계산함으로써 기존의 연구 방법과 제안된 연구 방법의 가시성 복원 정도를 비교 평가하였다. 다양한 안개 영상에 대한 실험 결과 제안된 방법의 우수한 안개 제거 및 화질 복원 능력이 입증되었다.
좁은 공간에 돼지들을 밀집 사육하는 구조가 대부분인 국내 돈사의 환경은 구제역과 같은 전염병 확산에 취약하다. 이러한 밀집 사육의 문제점을 해결하기 위한 방법으로 감시 카메라를 활용한 돈사 내 개별 돼지들의 행동을 자동으로 분석하는 연구가 진행 되고 있다. 그러나 공격행동 등 복잡한 상황에서 개별 돼지들을 추적하기 위해서는 근접한 돼지들에 대한 올바른 분리가 우선적으로 수행되어야 하지만, 정확도가 떨어지는 키넥트 카메라의 깊이 정보를 이용할 경우 돼지들 간의 경계선이 정확히 추출되지 않는다는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위한 방법으로 움직임 정보를 활용하여 근접 돼지를 분리하는 방법을 제안한다. 또한, 제안된 방법은 혼잡한 돈방에서 개별 돼지를 추적하는 경우 추적 오류를 탐지하는 문제에도 적용될 수 있다. 실험 결과, 실제 돈사에서 획득한 두 개의 근접 돼지 시퀀스에 대하여 86%의 정확도로 분리 가능함을 확인하였고, 객체 추적에 대한 검증을 통하여 식별 번호가 잘못 부여된 객체를 정확히 탐지할 수 있음을 확인하였다.
입체 디스플레이 보급의 보편화가 진행됨에 따라, 입체 콘텐츠의 수요가 증가하고 있다. 이러한 증가에 맞추어 2010년도를 기점으로 2D to 3D 변환 콘텐츠가 부족한 수요를 충족시킬 대안으로 제시되었다. 그러나 입체효과만을 강조한 2D to 3D 변환콘텐츠가 생산되면서 시각적 피로도와 입체감에 대한 품질의 저하가 문제로 지적되고 있다. 본 연구에서는 2011년 개봉한 '명장 관우'에서, 13개 Scene을 선별하여 입체 변환 콘텐츠로 제작하고, 변환에 적용된 Depth-Map의 품질이 시각적 피로도와 입체감을 표현하는데 있어서, 적정성을 가지는가의 여부를 전문가 그룹을 대상으로 인터뷰 및 설문조사를 시행하였다. 움직임의 변화가 많은 영상에 적용한 Depth-Map의 구성방식은 입체변환 기술에 많이 사용되는 방법으로 전(前) 후(後)관계의 분석을 통해 계단식 구성방식으로 깊이 단계 지도를 제작하게 된다. 실험을 통하여, 본 연구에서 제시한 Depth-Map의 구성이 입체변환 콘텐츠 제작에 있어 시각적 피로도를 낮추고 입체감 향상에 타당한지에 대한 결과를 도출하였으며, 실험에 응한 전문가 그룹의 과반수이상이 긍정적인 반응을 표시하였다. 본 연구의 결과 빠른 움직임을 가지는 2D영상을 3D영상으로 변환하는데 적용한 계단식 Depth-map의 구성방식으로도 시각적 피로도를 감소시키고, 입체감 인식을 증가시키는데 효율성을 가진다는 결과를 도출하였다.
본 논문에서는 스테레오 비전기반의 컬럼 검출과 조감도 맵핑을 이용한 전방 차량 검출 알고리즘을 제안한다. 제안된 알고리즘은 실제 복잡한 도로 환경에서 전방 차량을 강건하게 검출할 수 있다. 전체적인 알고리즘은 도로 특징기반의 컬럼 검출, 조감도 기반의 장애물체 세그멘테이션, 차량 특징기반의 영역 재결합, 차량 검증으로 크게 네 단계로 구성되어 있다. 먼저 v-시차맵상에서 최대 빈도값을 이용하여 도로 특징 정보만을 추출한 후, 이를 기반으로 컬럼 검출을 수행한다. 도로 특징 정보는 기존의 중앙값과 달리 도로 환경에 영향을 받지 않아 도로상의 장애물체 유무를 판단하는 기준으로 적절하다. 그러나 다수의 장애물체가 동일한 장애물체로 검출되는 것을 해결하기 위하여 조감도 기반의 세그멘테이션을 수행한다. 조감도는 시차맵과 카메라 정보를 기반으로 계산된 장애물체들의 위치를 평면상에 표시함으로써 장애물체를 쉽게 분리할 수 있다. 그러나 분리된 장애물체 중에는 동일한 장애물체인 경우도 있으므로, 도로상의 차량 특징을 기반으로 장애물체가 동일한지를 판단하여 재결합하는 과정을 수행한다. 마지막으로 시차맵과 그레이 영상기반의 차량 검증 단계를 수행하여 차량만 검출한다. 제안된 알고리즘을 실제 복잡한 도로 영상에 적용함으로써 차량 검증 성능을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.