• Title/Summary/Keyword: Depth of drilling

Search Result 212, Processing Time 0.019 seconds

Determination of Residual Stress by the Hole Drilling Method Based on Displacement Measurement (변위 측정을 기본으로 한 구멍뚫기방법에 의한 잔류응력 측정 방법)

  • Shin, Dong Il;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1542-1550
    • /
    • 2005
  • This paper presents the numerical procedure for calculating non-uniform residual stresses based on relieved displacements obtained from incremental hole drilling. The relationship between the in-plane displacement produced by introducing a blind hole and the corresponding residual stress is established. Finite element calculations are described to evaluate the relieved coefficients required for the determination of non-uniform residual stresses. Validity of the proposed method has been tested through three axisymmetric test examples and two three-dimensional examples. As a result of . simulation on the test examples, it is found that this numerical procedure is well adopted to measuring non-uniform residual stress in the full hole depth range of the hole diameter from the surface. The accuracy of the hole drilling method with displacement measurement is discussed, comparing tile method with strain measurement

Comparison of implant stability measurements between a resonance frequency analysis device and a modified damping capacity analysis device: an in vitro study

  • Lee, Jungwon;Pyo, Se-Wook;Cho, Hyun-Jae;An, Jung-Sub;Lee, Jae-Hyun;Koo, Ki-Tae;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.56-66
    • /
    • 2020
  • Purpose: A stability-measuring device that utilizes damping capacity analysis (DCA) has recently been introduced in the field of dental implantology. This study aimed to evaluate the sensitivity and reliability of this device by measuring the implant stability of ex vivo samples in comparison with a resonance frequency analysis (RFA) device. Methods: Six implant beds were prepared in porcine ribs using 3 different drilling protocols to simulate various implant stability conditions. Thirty-six pork ribs and 216 bone-level implants measuring 10 mm in height were used. The implant beds were prepared using 1 of the following 3 drilling protocols: 10-mm drilling depth with a 3.5-mm-diameter twist drill, 5-mm drilling depth with a 4.0-mm-diameter twist drill, and 10-mm drilling depth with a 4.0-mm-diameter twist drill. The first 108 implants were external-connection implants 4.0 mm in diameter, while the other 108 implants were internal-connection implants 4.3 mm in diameter. The peak insertion torque (PIT) during implant placement, the stability values obtained with DCA and RFA devices after implant placement, and the peak removal torque (PRT) during implant removal were measured. Results: The intraclass correlation coefficients (ICCs) of the implant stability quotient (ISQ) results obtained using the RFA device at the medial, distal, ventral, and dorsal points were 0.997, 0.994, 0.994, and 0.998, respectively. The ICCs of the implant stability test (IST) results obtained using the DCA device at the corresponding locations were 0.972, 0.975, 0.974, and 0.976, respectively. Logarithmic relationships between PIT and IST, PIT and ISQ, PRT and IST, and PRT and ISQ were observed. The mean absolute difference between the ISQ and IST values on a Bland-Altman plot was -6.76 (-25.05 to 11.53, P<0.05). Conclusions: Within the limits of ex vivo studies, measurements made using the RFA and DCA devices were found to be correlated under a variety of stability conditions.

Determination Method of Suitable Mud Density While Drilling through Confined Aquifer and Its Application (피압대수층을 통과하는 대심도 시추 중 적정이수밀도 결정 방법 및 적용 사례)

  • Woon Sang Yoon;Yoosung Kim;Hyeongjin Jeon;Yoonho Song;Changhyun Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • During deep drilling, confined aquifers can present various challenges such as the inability to remove cuttings, rapid groundwater influx, and mud loss. Particularly in flowing well conditions, it is essential to apply the suitable mud density since the aquifer can generates an overpressurized condition. This paper proposes a method for determining the suitable mud density while drilling (SMD) through confined aquifers using mud window analysis and applies it to a case study. The minimum mud density at each depth, which represents the lower limit of the mud window, is determined by the equivalent mud density pore pressure gradient (or by adding a trip margin) at that depth. The pore pressure gradient of a confined aquifer can be calculated using the piezometric level or well head pressure of the aquifer. As the borehole reaches the confined aquifer, there is a significant increase in pore pressure gradient, which gradually decreases with increasing depth. The SMD to prevent a kick can be determined as the maximum value among the minimum mud densities in the open hole section. After entering the confined aquifer, SMD is maintained as the minimum mud density at the top of the aquifer during the drilling of the open hole section. Additionally, appropriate casing installation can reduce the SMD, minimizing the risk of mud loss or invasion into the highly permeable aquifer.

Development of Round Trip Occurrence Simulator Considering Tooth Wear of Drill Bit (시추비트의 마모도를 고려한 라운드 트립 발생 예측 시뮬레이터 개발)

  • Lee, Seung Soo;Kim, Kwang Yeom;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.480-492
    • /
    • 2013
  • After the introduction of geothermal power generation technology based on engineering reservoir creation that can be applied on non-volcanic region, industrial need for studies on the efficient and economic execution of costly deep-depth drilling work becomes manifest increasingly. However, since it is very difficult to predict duration and cost of boring work with acceptable reliability because of many uncertain events during the execution, efficient and organized work management for drilling is not easily achievable. Especially, the round trip that discretely occurs because of the abrasion of bit takes more time as the depth goes deeper and it has a great impact on the work performance. Therefore, a technology that can simulate the occurrence timing and depth of round trip in advance and therefore optimize them is essentially required. This study divided the abrasion state of bit into eight steps for simulation cases and developed a forecast algorithm, i.e., TOSA which can analyze the depth and timing of round trip occurrence. A methodology that can divide a unit section for simulation has been suggested; while the Bourgoyne and Young model has been used for the forecast of drilling rates and bit abrasion extent by section. Lastly, the designed algorithm has been systemized for the convenience of the user.

Determination of non-uniform residual stress by the hole drilling method (구멍뚫기방법을 이용한 깊이방향으로 변하는 잔류응력 측정방법)

  • Ju, Jin-Won;Park, Chan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.268-277
    • /
    • 1998
  • The numerical procedure for calculating non-uniform residual stress fields by using relieved strain data from incremental hole drilling method is presented. Finite element calculations are described to evaluate the relieved coefficients required for the determination of residual stresses. From the results of simulations it is found that this numerical method is well adopted to measuring non-uniform residual stress in the hole depth range of 0.8 times of the hole diameter from the surface. In order to examine the practicability of this method, the hole drilling procedure for the four point bending test is performed. This method is applied to the measurement of residual stresses in the cold-rolled steel pipe. It is shown that the magnitude of residual stress in the pipe is not negligible when compared with yield stress and the residual stress should be duly considered in designing structures with this pipes.

Estimation of Drilling Velocity for Horizontal Wells Based on Alluvial Sediment Characteristics (충적층 입자 특성을 고려한 수평집수정 굴착 속도 추정)

  • Kim, Gyoo-Bum;Lee, Jeong-Woon;Lee, Chi-Hyung
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.273-280
    • /
    • 2015
  • Delays in horizontal well drilling when encountering heterogeneous sediments can have negative effects on the construction process at a riverbank filtration site. Grain size analysis, including calculation of the coefficient of uniformity and the coefficient of curvature, was conducted on soil samples collected at each drilling depth during the process of drilling horizontal wells. These results were then used to develop a linear equation for estimating drilling velocity using the coefficient of uniformity and the coefficient of curvature as inputs. Testing of the linear equation in other horizontal wells indicates that the equation is most appropriate for coarse-sand-sized and well-sorted sediment. Because this study was conducted in a region with small- to medium-sized streams, more data are needed from larger rivers to modify the general equation. Our results will provide better estimates of drilling velocity, in turn enabling more detailed design and more effective construction management at riverbank filtration sites.

Safety Assessment on the Human Intrusion Scenarios of Near Surface Disposal Facility for Low and Very Low Level Radioactive Waste (저준위 및 극저준위 방사성폐기물 표층처분시설의 인간침입 시나리오 안전평가에 대한 고찰)

  • Hong, Sung-Wook;Park, Sangho;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.79-90
    • /
    • 2016
  • The second-stage near surface disposal facility for low and very low level radioactive waste's permanent disposal is to be built. During the institutional control period, the inadvertent intrusion of the general public is limited. But after the institutional control period, the access to the general public is not restricted. Therefore human who has purpose of residence and resource exploration can intrude the disposal facility. In this case, radioactive effects to the intruder should be limited within regulatory dose limits. This study conducted the safety assessment of human intrusion on the second-stage surface disposal facility through drilling and post drilling scenario. Results of drilling and post drilling scenario were satisfied with regulatory dose limits. The result showed that post-drilling scenario was more significant than drilling scenario. According to the human intrusion time and behavior after the closure of the facility, dominant radionuclide contributing to the intruder was different. Sensitivity analyses on the parameters about the human behavior were also satisfied with regulatory dose limits. Especially, manual redistribution factor was the most sensitive parameter on exposure dose. A loading plan of spent filter waste and dry active waste was more effective than a loading plan of spent filter waste and other wastes for the radiological point of view. These results can be expected to provide both robustness and defense in depth for the development of safety case further.

A STUDY ON THE TEMPERATURE CHANGES OF BONE TISSUES DURING IMPLANT SITE PREPARATION (임플랜트 식립부위 형성시 골조직의 온도변화에 관한 연구)

  • Kim Pyung-Il;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.1-17
    • /
    • 2002
  • The purpose of this study is to examine the possibility of thermal injury to bone tissues during an implant site preparation under the same condition as a typical clinical practice of $Br{\aa}nemark$ implant system. All the burs for $Br{\aa}nemark$ implant system were studied except the round bur The experiments involved 880 drilling cases : 50 cases for each of the 5 steps of NP, 5 steps of RP, and 7 steps of WP, all including srew tap, and 30 cases of 2mm twist drill. For precision drilling, a precision handpiece restraining system was developed (Eungyong Machinery Co., Korea). The system kept the drill parallel to the drilling path and allowed horizontal adjustment of the drill with as little as $1{\mu}m$ increment. The thermocouple insertion hole. that is 0.9mm in diameter and 8mm in depth, was prepared 0.2mm away from the tapping bur the last drilling step. The temperatures due to countersink, pilot drill, and other drills were measured at the surface of the bone, at the depths of 4mm and 8mm respectively. Countersink drilling temperature was measured by attaching the tip of a thermocouple at the rim of the countersink. To assure temperature measurement at the desired depths, 'bent-thermocouples' with their tips of 4 and 8mm bent at $120^{\circ}$ were used. The profiles of temperature variation were recorded continuously at one second interval using a thermometer with memory function (Fluke Co. U.S.A.) and 0.7mm thermocouples (Omega Co., U.S.A.). To simulate typical clinical conditions, 35mm square samples of bovine scapular bone were utilized. The samples were approximately 20mm thick with the cortical thickness on the drilling side ranging from 1 to 2mm. A sample was placed in a container of saline solution so that its lower half is submerged into the solution and the upper half exposed to the room air, which averaged $24.9^{\circ}C$. The temperature of the saline solution was maintained at $36.5^{\circ}C$ using an electric heater (J. O Tech Co., Korea). This experimental condition was similar to that of a patient s opened mouth. The study revealed that a 2mm twist drill required greatest attention. As a guide drill, a twist drill is required to bore through a 'virgin bone,' rather than merely enlarging an already drilled hole as is the case with other drills. This typically generates greater amount of heat. Furthermore, one tends to apply a greater pressure to overcome drilling difficulty, thus producing even greater amount heat. 150 experiments were conducted for 2mm twist drill. For 140 cases, drill pressure of 750g was sufficient, and 10 cases required additional 500 or 100g of drilling pressure. In case of the former. 3 of the 140 cases produced the temperature greater than $47^{\circ}C$, the threshold temperature of degeneration of bone tissue (1983. Eriksson et al.) which is also the reference temperature in this study. In each of the 10 cases requiring extra pressure, the temperature exceeded the reference temperature. More significantly, a surge of heat was observed in each of these cases This observations led to addtional 20 drilling experiments on dense bones. For 10 of these cases, the pressure of 1,250g was applied. For the other 10, 1.750g were applied. In each of these cases, it was also observed that the temperature rose abruptly far above the thresh old temperature of $47^{\circ}C$, sometimes even to 70 or $80^{\circ}C$. It was also observed that the increased drilling pressure influenced the shortening of drilling time more than the rise of drilling temperature. This suggests the desirability of clinically reconsidering application of extra pressures to prevent possible injury to bone tissues. An analysis of these two extra pressure groups of 1,250g and 1,750g revealed that the t-statistics for reduced amount of drilling time due to extra pressure and increased peak temperature due to the same were 10.80 and 2.08 respectively suggesting that drilling time was more influenced than temperature. All the subsequent drillings after the drilling with a 2mm twist drill did not produce excessive heat, i.e. the heat generation is at the same or below the body temperature level. Some of screw tap, pilot, and countersink showed negative correlation coefficients between the generated heat and the drilling time. indicating the more the drilling time, the lower the temperature. The study also revealed that the drilling time was increased as a function of frequency of the use of the drill. Under the drilling pressure of 750g, it was revealed that the drilling time for an old twist drill that has already drilled 40 times was 4.5 times longer than a new drill The measurement was taken for the first 10 drillings of a new drill and 10 drillings of an old drill that has already been used for 40 drillings. 'Test Statistics' of small samples t-test was 3.49, confirming that the used twist drills require longer drilling time than new ones. On the other hand, it was revealed that there was no significant difference in drilling temperature between the new drill and the old twist drill. Finally, the following conclusions were reached from this study : 1 Used drilling bur causes almost no change in drilling temperature but increase in drilling time through 50 drillings under the manufacturer-recommended cooling conditions and the drilling pressure of 750g. 2. The heat that is generated through drilling mattered only in the case of 2mm twist drills, the first drill to be used in bone drilling process for all the other drills there is no significant problem. 3. If the drilling pressure is increased when a 2mm twist drill reaches a dense bone, the temperature rises abruptly even under the manufacturer-recommended cooling conditions. 4. Drilling heat was the highest at the final moment of the drilling process.

Detailed Processing and Analysis on the Single-channel Seismic Data for Site Survey of Daecheon-Wonsando Subsea Tunnel (대천-원산도 해저터널 부지조사를 위한 단일채널 탄성파자료의 정밀 처리 및 분석)

  • Kim, Won-Sik;Park, Keun-Pil;Kim, Hyun-Do;Cheong, Snons;Koo, Nam-Hyung;Lee, Ho-Young;Park, Eui-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.336-348
    • /
    • 2010
  • The Single-channel seismic survey with the source of bubble pulser and drilling survey was carried out in 2008 and 2009 for the site survey of Daecheon-Wonsando area, which was a proposed area of Korea-China subsea tunnel. The goal of this study is to analyze the depth and characteristics of acoustic basement for the stability assessment and tunnel design in this proposed area through combining drilling data with this single-channel seismic data after detailed processing. For this purpose, among the data processing schemes which are usually applied to multi-channel seismic data, we applied the F-K filtering to eliminate the AC(alternating current) noise and the post-stack depth migration to produce depth section. As a result, we verified that the improved depth section could be obtained from single-channel seismic data, and the distribution and characteristics of basement could be analyzed in survey area through the combined analysis with drilling data. However, we could not interpret the detailed structures, fault and fracture zone, due to the quality of bubble pulser source and single-channel data. We expect that those detailed structures can be analyzed when higher resolution seismic data is provided. Therefore, we recommend some items for future seismic survey of subsea tunnel to obtain the high resolution seismic data.

The Estimation of Defect of Mono Cast Nylon by Infrared Thermography (열화상 기술에 의한 M.C 나일론의 내부 결함에 대한 평가)

  • Han, Jeong-Seb
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.81-86
    • /
    • 2009
  • Infrared thermography was used to determine the location, size, and depth of defects under the surface of M.C nylon. Defects were created in a specimen by back-drilling circular holes. These defects were located at the maximum temperature difference that occurred. The sizes of the defects could be calculated by means of the full width at half of the maximum temperature difference. The depth of a defect could be calculated by the peak time and the maximum temperature difference. The maximum temperature difference between a defect and normal part was decreased with the depth of the defect. And the peak time also slowly appeared with the depth of the defect.