• Title/Summary/Keyword: Depth of drilling

Search Result 212, Processing Time 0.025 seconds

Porosity estimation using electrical resistance Cone Probe in offshore soils (전기저항 콘 프로브를 이용한 해안지반의 간극률 산정)

  • Lee, Jong-Sub;Kim, Joon-Han;Yoon, Hyung-Koo;Cho, Tae-Hyeon;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.127-133
    • /
    • 2008
  • The electrical resistivity methods have been commonly used for figuring out the ground layers. The purpose of this paper, differently from previous methods, is not only to figure out the layers but also to develope a equipment and a method to analyze ground porosity. Equipment has a shape of cone, which can be coupled with drilling rods. A field penetration test was performed to test application in Incheon Chungla area. Through the field test soil resistances were measured. To calculate soil porosity along the depth, Archie's law is applied. The results show that a new equipment and porosity analysis method using Archie's law can distinguish soil layers and precisely measure soil porosity.

  • PDF

Tunnel Overbreak Management System Using Overbreak Resistance Factor (여굴저항도를 이용한 터널 발파 여굴 관리 시스템)

  • Jang, Hyongdoo
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • When tunnel is excavated via drilling and blasting, the excessive overbreak is the primary cause of personal or equipment safety hazards and increasing the cost of the tunnel operation owing to additional ground supports such as shotcrete. The practical management of overbreak is extremely difficult due to the complex causative mechanism of it. The study examines the relationship between rock mass characteristics (unsupported face condition, uniaxial compressive strength, face weathering and alteration, discontinuities- frequency, condition and angle between discontinuities and tunnel contour) and the depth of overbreak through using feed-forward artificial neuron networks. Then, Overbreak Resistance Factor (ORF) has been developed based on the weights of rock mass parameters to the overbreak phenomenon. Also, a new concept of tunnel overbreak management system using ORF has been suggested.

Distribution Characteristics of Land and River Aggregate Resources in Yeongam Area by Deposition Period (영암지역 육상 및 하천 골재의 퇴적 시기별 분포 특성)

  • Jin Cheul Kim;Sei Sun Hong;Jin-Young Lee;Ju Yong Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.243-251
    • /
    • 2024
  • In this study, a surface geological survey was first conducted to investigate aggregate resources in the Yeongam area of Jeollanam-do, and a drilling survey was conducted in the lower part of the surface, which was difficult to identify through a surface geological survey, to determine the spatial distribution of aggregates. Drilling sites were selected considering the topographical development and Quaternary alluvium characteristics of the study area, and river aggregate drilling surveys were conducted at a total of 5 points and land aggregate drilling surveys were conducted at a total of 28 points. Borehole core sediments were classified into seven sedimentary units to determine whether they could be used as aggregates, and optically stimulated luminescence dating was performed on representative boreholes to measure the depositional period for each sedimentary unit. As a result of the study, most of the Yeongam area had a very wide river basin, so it was estimated that there would be a large amount of aggregate, but the amount of aggregate was evaluated to be very small compared to other cities and counties. Most of the unconsolidated sedimentary layers in the Yeongam area are composed of blue-grey marine clay with a vertical thickness of more than 10 m. The sand-gravel layer corresponding to the aggregate section is distributed in the lower part of the marine clay, thinly covering the bedrock weathering zone. This is because the amount of aggregates themselves is small and most of the aggregates are distributed at a depth of 10 m below the surface, which is currently difficult to develop, so the possibility of developing aggregates is evaluated to be very low. As a result of dating, it can be seen that the blue-grey marine clay layer is an intertidal sedimentary layer formed as the sea level rose rapidly about 10,000 years ago. The deposition process continued from 10,000 years ago to the present, and as a result, a very thick clay layer was deposited. This clay layer was formed very dominantly for about 6,000 to 8,000 years, and the sand-gravel layer in the section where aggregates deposited in the Pleistocene period can exist was measured to have been deposited at about 13.0 to 19.0 ka, and about 50 ka, showing that it was deposited as paleo-fluvial deposits before the marine transgression process.

Geophysical and Geological Investigation for Selecting a Dinosaur Museum Site in the Dinosaur Egg Fossil Area, Gojeong-ri, Hwasung, Gyeonggi Province (경기도 화성 고정리 공룡알 화석지 공룡생태박물관 부지선정을 위한 지구물리 및 지질조사)

  • Kim, Han-Joon;Jeong, Gap-Sik;Yi, Bo-Yeon;Jo, Churl-Hyun;Lee, Kwang-Bae;Lee, Jun-Ho;Jou, Hyeong-Tae;Lee, Gwang-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.357-363
    • /
    • 2010
  • In this study, we investigated the geologic structure of the basement and overlying sediments of the construction site of the dinosaur egg fossil museum in Hwasung, Gyeonggi Province through refraction seismology, drilling, and downward seismic velocity measurements in the drill holes. The construction site ($350{\times}750\;m^2$) is located in the reclaimed area south of Sihwa Lake, Gojeong-ri. About 6,950 m of seismic refraction data consisting of 11 lines were acquired using a sledge hammer source. Drilling to the basement was performed at five sites. Sediment samples from drilling were analysed for grain-size distribution and age dating. At two drill holes, seismic velocity was measured with depth using a hammer as a seismic source. The geological structure of the study area consists of, from top to bottom, a tidal flat layer (5 ~ 12 m thick), a weathered soil layer (2 ~ 8 m thick), and the basement. The basement is interpreted as Cretaceous sedimentary rocks that tend to be shallow eastward. The volume of the tidal flat sediments and weathered soil in the study area is estimated as $1.4{\times}10^6\;m^3$, weighing $3.5{\times}10^6$ tons. The rate of sea level rise since 8,000 yrs BP is estimated to be 0.1 ~ 0.15 cm/yr.

An Analysis on the Behavior Characteristics of the Side of Drilled Shafts in Rocks (암반에 근입된 현장타설말뚝의 주면부 거동특성 분석)

  • Lee, Hyukjin;Lee, Hyungkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.101-111
    • /
    • 2006
  • In case of drilled shafts installed by drilling through soft overburden onto a strong rock, the piles can be regarded as end-bearing elements and their working load is determined by the safe working stress on the pile shaft at the point of minimum cross-section or by code of practice requirements. Drilled shafts drilled down for some depth into weak or weathered rocks and terminated within these rocks act partly as friction and partly as end-bearing piles. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft pile performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. In this study, the numerical analyses are carried out to investigate the behavior characteristics of side of rock socketed drilled shafts varying the loading condition at the pile head. The difference of behavior characteristics of side resistance is also evaluated with the effects of modelling of asperity.

  • PDF

An Analysis of Stress Transfer Behaviors within the Necrotic Cancellous Bone following Surgical Procedures or the Management of the Osteonecrosis of the Femoral Head (대퇴골두 무혈성 괴사증의 수술적 기법 적용 후 괴사 망상골 내에서의 응력 변화 해석)

  • Kim, J.S.;Lee, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.245-248
    • /
    • 1997
  • Operative interventions for the management of osteonecrosis of the femoral head (ONFH) include core drilling, with or without vascularized fibular bone grafting. Nevertheless, their clinical results have not been consistently satisfactory. Recently, a new surgical procedure that incorporates cementation with polymethylmethacrylate (PMMA) after core drilling has been tried clinically. In this study, a biomechanical analysis using a finite element method(FEM) was undertaken to evaluate surgical methods and their underlying surgical parameter. Our finite element models included five types. They were (1) normal model (Type I), (2) necrotic model (Type II), (3) core decompressed model (Type III). (4) fibular bone grafted model (Type IV), and (5) cemented with PMMA model (Type V). The geometric dimensions of the femur were based on digitized CT-scan data of a normal person. Various physiological loading conditions and surgical penetration depths by the core were used as mechanical variables to study their biomechanical contributions in stress transfer within the femoral head region. In addition. the peak von Mises stress(PVMS) within the necrotic cancellous bone of the femoral head was obtained. The fibular bone grafted method and cementation method provided optimal stress transfer behaviors. Here. substantial increase in the low stress level was observed when the penetration depth was extended to 0mm and 5mm from the subchondral region. Moreover, significant decrease in PVMS due to surgery was observed in the fibular bone grafted method and the cementation method when the penetration depths were extended up to 0 and 5mm from the subchondral region. The drop in PVMS was greater during toe-off than during heel-strike (57% vs. 28% in Type IV and 49% vs. 22% in Type V). Both the vascularized fibular bone grafting method (Type IV) and the new PMMA technique (Type V) appear to be very effective in providing good stress transfer and reducing the peak Von-Mises stress within the necrotic region. Overall results show that fibular bone grafting and cementation methods are quite similar. In light of above results, the new cementation method appears to be a promising surgical alternative or the treatment of ONFH. The use of PMMA for the core can be less prone to surgical complication as opposed to preparation of fibular bone graft and can achieve more immediate fixation between the core and the surrounding region.

  • PDF

A Study on the Characteristics of the Residual Stress Distribution of Steel Structural Members (용접(鎔接) 강구조(鋼構造) 부재(部材)의 잔류응력(殘留應力) 특성(特性)에 관한 연구(研究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.93-101
    • /
    • 1987
  • Residual stresses have remained around welding areas of a steel structure member after welding operation. The major causes to occur these residual stresses are the local heat due to a welding, the heat stresses due to a irregular and rapid cooling condition, the material and rigidity of a steel structure. Ultimatly, these residual stresses have been known to decrease a brittle fracture strength, a fatigue strength, a buckling strength, dynamic properties, and the corrosion resistance of the material. This paper deals with the residual stresses on a steel structure member through experimental studies. SWS 58 plates were welded by the method of X-groove type. These plates were layed on the heat treatment at four different temperatures; $350^{\circ}C$, $500^{\circ}C$, $650^{\circ}C$ and $800^{\circ}C$. The resulting residual Stresses were measured by hole drilling method, and the followings were obtained. The residual stresses on the vicinity of a welding point were relieved most effectively at the temperature of $650^{\circ}C$, and these stresses relieved completly when the ratio of a hole diamerter to a hole depth became unity. Hardness test shows that the higher value of hardness at the heat affected zone dropped to belower as the temperature went up from $350^{\circ}C$ to $800^{\circ}C$. The Welding input heats have not influenced the magnitude of residual stresses at the input heat range between above and below one forth than standard.

  • PDF

Research Background and Plan of Enhanced Geothermal System Project for MW Power Generation in Korea (MW급 EGS 지열발전 상용화 기술개발사업의 추진 배경 및 계획)

  • Yoon, Woon-Sang;Song, Yoon-Ho;Lee, Tae-Jong;Kim, Kwang-Yeom;Min, Ki-Bok;Cho, Yong-Hee;Jeon, Jong-Ug
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.11-19
    • /
    • 2011
  • Geothermal energy is believed to be an important source among the renewable energy sources to provide the base load electricity. Although there has been a drastic increase in the use of geothermal heat pump in Korea, there is no geothermal power plant in operation in Korea. Fortunately, the first EGS (Enhanced Geothermal System) Project in Korea has started in Dec 2010. This five year project is divided into two stages; two years for exploration and drilling of 3 km depth to confirm the minimum target temperature of 100 degrees, and another three years composed drilling 5 km doublet, hydraulic stimulation of geothermal reservoir with expected temperature of 180 degrees (40 kg/s) and construction of MW geothermal power plant in the surface. This EGS project would be a landmark effort that invited a consortium of industry, research institutes and university with expertises in the fields of geology, hydrogeology, geophysics, geomechanics and plant engineering.

Geoacoustic Model at the YSDP-105 Long-core Site in the Mid-eastern Yellow Sea (황해 중동부 해역 YSDP-105 심부코어 지점의 지음향 모델)

  • Ryang, Woo-Hun;Jin, Jae-Hwa;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.24-36
    • /
    • 2019
  • In the mid-eastern Yellow Sea, glacio-eustatic sea-level fluctuations and a regional tectonic subsidence have combined to represent an aggradational stacking pattern of sedimentary units during late Pleistocene-Holocene. The accumulated sediments are divisible into two-type units of Type-A and Type-B in high-resolution air-gun seismic profiles and the deep-drilled core of YSDP-105. Type-A unit largely comprises clast-rich coarse-grained sediments of non-marine to paralic origin, whereas Type-B unit consists mostly of tidal fine-grained sediments. Based on a bottom model of the sedimentary units, this study suggested a geoacoustic model of long-coring bottom layers at the YSDP-105 drilling site of the mid-eastern Yellow Sea. The geoacoustic model of 64-m depth below the seafloor with four-layer geoacoustic units was reconstructed in continental shelf strata at 45 m in water depth. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the seafloor using the Hamilton modeling method. We suggest that the geoacoustic model will be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the mid-eastern Yellow Sea.

Numerical modeling of two parallel tunnels interaction using three-dimensional Finite Elements Method

  • Nawel, Bousbia;Salah, Messast
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.775-791
    • /
    • 2015
  • Due to the extension of communication ways (metro, highways, railways), hence, to improve traffic flow imposes often the difficult crossing that generally drive to the construction of underground works (tunnel, water conveyance tunnel...) plays a major role in the redevelopment of urban areas. This study is focused on the assessment of the interaction response of parallel tunnels, so this study uses the results from the simulation of two tunnels to illustrate a few observations that may aid in practical designs. In this article, simultaneous drilling of highway's twin tunnels is simulated by means of Finite Element Method (FEM) implemented in Plaxis program. So the treated subject appears in a setting of geotechnical where one can be to construct several tunnels sometimes in a ground of weak mechanical characteristics. The objective of this study is to simulate numerically the interaction effects caused by construction of two parallels tunnels. This is an important factor in the study of the total answer of the problem interaction between parallels underground works. The importance of the effects transmitted is function of several parameters as the type of the works, and the mechanical characteristics (tunnel size, depth, and the relative position between two tunnels, lining thickness...). This article describes numerical analyses of two parallels tunnels interaction. This study will be applied to a real case of a section tunnel T4 of the highway East-West (Algeria); the study presented below comprises a series of numerical simulations of two tunnels using the computer program Plaxis which is used in the analyses is based on Finite Element Method.