자기연마공정은 유동성이 높은 연마입자를 활용하기 때문에 곡면 및 그루브 형상에도 적용이 가능한 장점을 지니고 있다. 본 연구에서는 제 2세대 자기연마법을 활용하여 그루브 형상에 대한 자기연마가공 특성을 평가하여, 이를 향후 연료전지 채널과 같은 3차원 형상의 자기연마에 활용하고자 한다. 실험은 최대 1.5mm 깊이의 그루브에 대해 자기연마가공 후 슬롯부 및 랜드부의 표면거칠기 변화를 관찰하였다. 그 결과 랜드부의 길이가 증가하고 그루브의 깊이가 깊어질수록 랜드부의 표면거칠기 향상정도는 높아졌다. 또한 슬롯부의 표면거칠기 향상정도는 랜드부와 슬롯부의 길이비가 증가하고 그루브의 깊이가 깊어질수록 감소하는 경향을 나타내었다. 마지막으로 자기연마가공을 통해서 그루브의 형상에는 큰 변화없이, 그루브의 모서리에 생성된 버를 효과적으로 제거할 수 있었다.
Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.
본 논문은 2D/3D 변환 알고리즘을 제안하였다. 제안된 알고리즘은 2차원 영상의 단일 프레임을 이용한 것으로 실시간 처리가 가능한 알고리즘이다. 제안된 알고리즘은 하나의 프레임에서 객체의 수직 위치 정보를 이용하여 깊이 지도를 생성한다. 실시간 처리와 하드웨어 복잡도를 개선하기 위해 영상 샘플링, 표준 휘도화를 이용한 객체 분할, 그리고 경계 스캔을 이용한 깊이지도 생성 등을 수행하였다. 동영상, 정지영상 모두 적용이 가능하며, 수직 위치 정보를 이용하므로 원거리 영상 혹은 풍경, 파노라마 사진과 같은 영상도 효과적인 입체 효과를 보여줄 수 있다. 제안된 알고리즘은 객체의 움직임 방향 혹은 속도 또는 장면 전환 등에 제약 없이 입체 효과가 가능하다. 제안 알고리즘 검증은 시각적인 방법과 APD(Absolute Parallax Difference)를 이용하여 MTD (Modified Time Difference)방식과의 비교를 수행하였다.
IEIE Transactions on Smart Processing and Computing
/
제2권5호
/
pp.255-265
/
2013
3DTV is expected to be a promising next-generation broadcasting service. On the other hand, the visual discomfort/fatigue problems caused by viewing 3D videos have become an important issue. This paper proposes a perceptual quality assessment metric for a stereoscopic video (SV-PQAM). To model the SV-PQAM, this paper presents the following features: temporal variance, disparity variation in intra-frames, disparity variation in inter-frames and disparity distribution of frame boundary areas, which affect the human perception of depth and visual discomfort for stereoscopic views. The four features were combined into the SV-PQAM, which then becomes a no-reference stereoscopic video quality perception model, as an objective quality assessment metric. The proposed SV-PQAM does not require a depth map but instead uses the disparity information by a simple estimation. The model parameters were estimated based on linear regression from the mean score opinion values obtained from the subjective perception quality assessments. The experimental results showed that the proposed SV-PQAM exhibits high consistency with subjective perception quality assessment results in terms of the Pearson correlation coefficient value of 0.808, and the prediction performance exhibited good consistency with a zero outlier ratio value.
본 논문에서는 일반적인 2차원 영상에서 운동 시차론 이용하여 서로 다른 원근 깊이를 갖는 입체 영상을 생성하고, 2차원 영상에서 운동 물체의 운동 방향과 속도에 상관없이 3차원 효과를 제공할 수 있는 입체 영상 변환 방법을 제안하고자 한다. 입체 영상은 제안한 움직임 검출, 영역 분할, 그리고 깊이 지도 생성 방법을 이용하여 인접한 2차원 영상 사이에서 운동 시차를 계산하여 생성된다. 제안한 방법은 다양한 영상원에 대해서 실시간으로 입체 영상 변환이 가능하며, MTD 방식과의 성능 비교를 통하여 제안한 방법의 성능 평가를 수행하였다.
최근 다양한 3차원 영상처리 기술이 산업체 전반으로 확대되고 있다. 관련 기술중의 하나인 입체변환은 기존의 2D영상에서 입체영상을 생성하는 기술이다. 이 기술은 영화, 방송 콘텐츠에 적용되어 3D 입체로 시청할 수 있는데, 3D 기술의 지속적인 산업체 응용이 요구됨에 따라 입체변환 기술을 새로운 분야로 적용하여 새로운 입체 콘텐츠를 제작하는 것이 필요하다. 이러한 추세에 따라 이 기술을 의료영상에 응용하는 것이 본 논문의 목적이다. 의료 영상은 정확한 판독이 필요하기 때문에 2D 의료영상보다 구체적인 3D 정보를 얻을 수 있는 3D 입체영상에 관심이 높아지고 있다. 본 논문에서는 기존의 2D 의료영상으로부터 입체영상을 생성하는 의료영상 입체변환 방법을 제안한다. 실험 영상으로 CT(Computed Tomograpy) 영상을 사용한다. 제안 방법은 장기의 영역 분할, 에지를 이용한 경계선 추출, 각 장기의 깊이 정보에 따른 명암 분석 등으로 구성된다. 얻어진 데이터를 바탕으로 CT 영상의 깊이맵을 생성한다. 최종적으로 추출된 깊이 맵과 2D 의료영상으로 부터 입체영상을 생성한다.
최근 3D 콘텐츠의 관심 증가는 Display 장치, 모바일 기기 등의 하드웨어적인 발전을 가져왔고, 이에 따른 입체 콘텐츠의 필요성이 대두되고 있다. 또한 단순히 영상을 비 실시간으로 처리하여 입체로 변환하는 것 외에, 방송이나 모니터 자체에서의 입체변환에 대한 기술은 3D콘텐츠 산업에서 또 다른 이슈로 부각되고 있다. 본 논문에서는 깊이 필터와 움직임 예측을 이용한 깊이맵 생성 기법을 제안한다. 영상에서 Y 버퍼를 추출하고, 이에 깊이 필터를 적용시킨 후 블록단위 움직임 예측을 적용한다. 이렇게 구해진 움직임 벡터에 노이즈 제거 등을 통하여 물체의 영역을 추출한 후, 최종적으로 깊이맵을 생성한다.
This paper presents a 3D object recognition method for generation of 3D environmental map or obstacle recognition of mobile robots. An active light source projects a stripe pattern of light onto the object surface, while the camera observes the projected pattern from its offset point. The system consists of a laser unit and a camera on a pan/tilt device. The line segment in 2D camera image implies an object surface plane. The scaling, filtering, edge extraction, object extraction and line thinning are used for the enhancement of the light stripe image. We can get faithful depth informations of the object surface from the line segment interpretation. The performance of the proposed method has demonstrated in detail through the experiments for varies type objects. Experimental results show that the method has a good position accuracy, effectively eliminates optical noises in the image, greatly reduces memory requirement, and also greatly cut down the image processing time for the 3D object recognition compared to the conventional object recognition.
본 논문에서는 영역 분할과 영상의 움직임 정보를 이용한 깊이맵 생성에 관한 기법을 제안하였다. 2D/3D 변환 알고리즘에서 2차원 영상에서 얻은 깊이 정보는 2차원 영상을 3차원 영상으로 변환 가능하게 하는 핵심 기술이 된다. 영역을 분할하고 계산되어진 움직임 값 (intensity)을 분할된 각 영역에 부여함으로서 깊이맵을 얻을 수 있다. 본 논문에서는 초기 단계에서 영역을 분할한 뒤, 입력 영상을 그룹화 하여 양방향 탐색을 통한 움직임 추정 연산을 수행토록 하여 보다 정확한 깊이 정보를 획득하고, 최종적으로 얻은 결과에 각 화소에 해당 되는 확률적 통계에 의한 후처리 기법을 사용하였다. 보다 정확한 깊이정보를 영역별로 지정하고, 후처리 기법을 사용함에 따라 보다 신뢰도 높은 깊이맵 영상을 생성할 수 있었다.
최근 3 차원 디스플레이 기술의 발전에 힘입어 3 차원 컨텐츠에 대한 수요도 늘고 있다. 스테레오스코픽(Stereoscopic) 렌즈를 이용하여 3 차원 컨텐츠를 만들거나 여러 장의 2 차원 영상을 이용한 3 차원 복원 연구가 활발히 진행되는 가운데 본 논문에서는 단일 2 차원 영상을 이용해서 깊이 지도를 획득하는 알고리즘을 제안한다. 단일 영상을 보고 3 차원 구조를 파악하는 인간의 시각 체계의 능력에 착안하여 본 논문에서는 단일 영상을 이용하여 깊이 정보를 추출하는 알고리즘을 제안한다. 깊이 단서들 중, 가림 단서를 소개하고 추가로 인간의 시각 체계에서 사용하는 깊이 단서들을 결합하여 기계 학습 알고리즘에 접목시킨다. 실험을 통해 우리는 제안 알고리즘이 물체의 외곽정보를 이용하여 양질의 깊이 지도를 준다는 것을 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.