• Title/Summary/Keyword: Depth filtration

Search Result 91, Processing Time 0.025 seconds

Elution characteristics of lime-based granular alkaline material and applicability of phosphorus crystallization processes (석회계 입상알칼리재의 용출특성과 이를 이용한 인 결정화공정의 적용성)

  • Chang, Hyang-Youn;Park, Na-Ri;Jang, Yeo-Ju;Ahn, Kwang-Ho;Lim, Hyun-Man;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.577-586
    • /
    • 2017
  • One of the major sources causing eutrophication and algal blooms of lakes or streams is phosphorus which comes from point and nonpoint pollution sources. HAP (hydroxyapatite) crystallization using granular alkaline materials can achieve the decrease of phosphorus load from wastewater treatment plants and nonpoint pollution control facilities. In order to induce HAP crystal formation, continuous supply of calcium and hydroxyl ions is required. In this research, considering HAP crystallization, several types of lime-based granular alkaline materials were prepared, and the elution characteristics of calcium and hydroxyl ions of each were analyzed. Also, column tests were performed to verify phosphorus removal efficiencies of granular alkaline materials. Material_1 (gypsum+cement mixed material) achieved the highest pH values in the column tests consistently, also, Material_2 (gypsum+slag mixed material) and Material_3 (calcined limestone material) achieved over pH 9.0 for 240 hours (10 days) and proved the efficiencies of long-term ion supplier for HAP crystallization. In the column tests using Material_3, considerable pH increase and phosphorus removal were carried out according to each linear velocity and filtration depth. T-P removal efficiencies were 87.0, 84.0, 68.0% and those of PO4-P 100.0, 97.0, 80.0% for linear velocity of 1.0, 2.5, 5.0 m/hr respectively. Based on the column test results, the applicability of phosphorus removal processes for small-scale wastewater treatment plants and nonpoint pollution control facilities was found out.

A Study on Nitrification of Raw Waters Containing Linear Alkyl Sulfate in Biological Activated Carbon (생물활성탄을 이용한 Linear Alkyl Sulfate함유 원수에서의 질산화에 관한 연구)

  • Park, Seong Sun;Chang, Ji Soo;Yu, Myong Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.116-126
    • /
    • 1995
  • The purpose of this study was to investigate the removal of ammonium nitrogen by biological nitrification in raw water containing LAS using BAC. At batch teats, LAS removal by ozone followed the first order reaction, and the rate constants(k) by ozone dose 1, 3mg/min.L were $0.040min^{-1}$, $0.062min^{-1}$ respectively. Therefore, the more ozone was dosed, the higher LAS was removed The reaction between ozone and ammonium nitrogen also followed the first order, and rate constants(k) at pH7,8 and 9 were $8.9{\times}10^{-4}min-1$, $3.8{\times}10^{-3}min^{-1}$, and $2.9{\times}10^{-2}min^{-1}$ respectively at ozone dose of 3mg/min.L . Therefore, ammonium nitrogen was little removed by ozone under neutral pH of 7. The continuous flow apparatus had four sets composed of a ozone contacter and a GAC column. Through continuous filtration test for 50days, the following conclusions were derived; (1) LAS was removed 23%, 30% respectively by ozone dose 1, 3mg/L, and was not detected in all column effluents during the period of experiment. Therefore, it appeared that adsorption capacities of each column still remained. (2) Ammonium nitrogen concentration after ozone contact varied little in raw Water because pH of raw water was from 6 to 7, and was transfered to nitrite and nitrate within GAC columns as the result of staged nitrification. After 30days, nitrite was not detected in all column effluents due to biological equilbrium between nitro semonas and nitrobacter Average removals of ammonium nitrogen in each column after the lapse of 30days were the following; ${\cdot}$ column A (ozone dose 3mg/L, EBCT 9.5min): about 100% ${\cdot}$ column B (ozone dose 1mg/L, EBCT 9.5min): 91% ${\cdot}$ column C (ozone dose 3mg/L, EBCT 14.2min): about 100% ${\cdot}$ column D (ozone dose 0mg/L, EBCT 9.5min): 53% Though column A and C reached nitrification of about 100%, column C (longer EBCT than column A) was more stable than column A. (3) After backwash, nitrification reached steady state within 5 to 8 hours. Therefore, nitrification was not greatly affected by backwash. (4) According to the nitrification capacity in depth of column A, C, where 100% nitrification occured. LAS was removed within 20cm, while ammonium nitrogen required more depth to be removed by nitrification.

  • PDF

Feasibility Study on Removal of Total Suspended Solid in Wastewater with Compressed Media Filter (압축성 여재 여과를 이용한 하수의 고형물질 제거 타당성 연구)

  • Kim, Yeseul;Jung, Chanil;Oh, Jeill;Yoon, Yeomin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.84-95
    • /
    • 2014
  • Recently, as a variety of techniques of CMF (Compressed media filter) that has advantages of high porosity and compressibility have been developed in the U.S. and Japan. Therefore, the interest of intensive wastewater treatment using CMF has grown. This study examined the feasibility of CMF with varying sewage water quality to determine the optimum operating conditions. A preliminary tracer test that investigated the filtering process under various compression and flow rate conditions was performed. In a high compression condition, different porosities were applied to each depth of the column. Therefore, a distinct difference between a theoretical value and results of tracer test was observed. For the TSS (Total suspended solid) removal and particle size distribution of CMF for pre-treatment water under the various compression conditions, the compression ratio of 30 percent as the optimal condition showed greater than 70% removal efficiency. In addition, the compression ratio of >15% was required to remove small-sized particles. Also, an additional process such as coagulation is necessary to increase the removal efficiency for < $10{\mu}m$ particles, since these small particles significantly influence the effluent concentration. Modeling results showed that as the compression rate was increased, TSS removal efficiency in accordance with each particle size in the initial filtration was noticeably observed. The modeling results according to the depth of column targeting $10{\mu}m$ particles having the largest percentage in particle size distribution showed that 150-300 mm in filter media layer was the most active with respect to the filtering.

The review on standard method of microplastics in soil and groundwater (토양, 지하수 중 미세플라스틱 분석법에 관한 고찰)

  • JongBeom Kwon;Hyeonhee Choi;Sunhwa Park
    • Analytical Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.174-188
    • /
    • 2024
  • This review summarized research trends regarding sample collection methods, pretreatment method, and types of analysis devices for microplastics (MPs) in soil and groundwater matrices. Soil sampling considers the selection of sampling location, depth, and volume. The typically sampling depth is within 15 cm (topsoil), and about 1 kg of mixed each sample. Among spot sampling and continuous flow sampling, groundwater sampling mainly used a continuous flow sampling, with collection rates 2 to 6 L/min in the range of 300~1,000 L, and followed by immediate on-situ filtration. Pretreatment method, applied to soil and groundwater, consist of organic digestion and density separation. In the organic digestion method, H2O2 is recommended among H2O2, acidic, alkaline, and enzymatic method. NaCl is primarily used as a reagent in density separation. However, depending on the density of MPs, other regents can be selectively used like ZnCl2, ZnBr2, and etc. Representative analysis device includes Fourier Transform Infrared (FTIR) and Raman spectroscopy for non-destructive analysis and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) for destructive analysis. µ-FTIR and Raman can count MPs of larger than 10 and 1 ㎛, and analyze MPs materials. However, it is need to sufficiently remove interference, like organic matter, in spectroscopic analysis using essential pretreatment method. Py-GC/MS is being continuously researched because it doesn't require complex pretreatment method and allows quantitative analysis of specific materials.

The Evaluation of Predose Counts in the GFR Test Using $^{99m}Tc$-DTPA ($^{99m}Tc$-DTPA를 이용한 사구체 여과율 측정에서 주사 전선량계수치의 평가)

  • Yeon, Joon-Ho;Lee, Hyuk;Chi, Yong-Ki;Kim, Soo-Yung;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.94-100
    • /
    • 2010
  • Purpose: We can evaluate function of kidney by Glomerular Filtration Rate (GFR) test using $^{99m}Tc$-DTPA which is simple. This test is influenced by several parameter such as net syringe count, kidney depth, corrected kidney count, acquisition time and characters of gamma camera. In this study, we evaluated predose count according to matrix size in the GFR test using $^{99m}Tc$-DTPA. Materials and Methods: Gamma camera of Infinia in GE was used, and LEGP collimator, three types of matrix size ($64{\times}64$, $128{\times}128$, $256{\times}256$) and 1.0 of zoom factor were applied. We increased radioactivity concentration from 222 (6), 296 (8), 370 (10), 444 (12) up to 518 MBq (14 mCi) respectively and acquired images according to matrix size at 30 cm distance from detector. Lastly, we evaluated these values and then substituted them for GFR formula. Results: In $64{\times}64$, $128{\times}128$ and $256{\times}256$ of matrix size, counts per second was 26.8, 34.5, 41.5, 49.1 and 55.3 kcps, 25.3, 33.4, 41.0, 48.4 and 54.3 kcps and 25.5, 33.7, 40.8, 48.1 and 54.7 kcps respectively. Total counts for 5 second were 134, 172, 208, 245 and 276 kcounts from $64{\times}64$, 127, 172, 205, 242, 271 kcounts from $128{\times}128$, and 137, 168, 204, 240 and 273 kcounts from $256{\times}256$, and total counts for 60 seconds were 1,503, 1,866, 2,093, 2,280, 2,321 kcounts, 1,511, 1,994, 2,453, 2,890 and 3,244 kcounts, and 1,524, 2,011, 2,439, 2,869 and 3,268 kcounts respectively. It is different from 0 to 30.02 % of percentage difference in $64{\times}64$ of matrix size. But in $128{\times}128$ and $256{\times}256$, it is showed 0.60 and 0.69 % of maximum value each. GFR of percentage difference in $64{\times}64$ represented 6.77% of 222 MBq (6 mCi), 42.89 % of 518 MBq (14 mCi) at 60 seconds respectively. However it is represented 0.60 and 0.63 % each in $128{\times}128$ and $256{\times}256$. Conclusion: There was no big difference in total counts of percentage difference and GFR values acquiring from $128{\times}128$ and $256{\times}256$ of matrix size. But in $64{\times}64$ of matrix size when the total count exceeded 1,500 kcounts, the overflow phenomenon was appeared differently according to predose radioactivity of concentration and acquisition time. Therefore, we must optimize matrix size and net syringe count considering the total count of predose to get accurate GFR results.

  • PDF

Application of an imaging plate to relative dosimetry of clinical x-ray beams (Imaging Plate를 이용한 의료용 광자선의 선량측정)

  • 임상욱;여인환;김대용;안용찬;허승재;윤병수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.117-122
    • /
    • 2000
  • The IP(imaging plate) has been widely used to measure the two-dimensional distribution of incident radiation since it has a high sensitivity, reusability, a wide dynamic range, a high position resolution. Particularly, the easiness of acquiring digitized image using IP poses a strong merit because recent trend of data handling prefers image digitization. In order to test its usefulness in photon beam dosimetry, we measured the off-axis ratio(OAR) on portal planes and percent depth dose(PDD) within a phantom using IP, and compared the results with the data based on EGS4 Monte Carlo particle transport code, ion-chambers, conventional films. For the measurement, we used 6 MV X-rays, various field sizes. As a result, IP showed significant deviation from ion-chamber measurement: a significant overresponse, 100% greater than that of ion-chamber measurement at deep part of the phantom. Filtration of low-energy scattered photons at deep part of the phantom using 0.5 mm thick lead sheets did improve the result, only to the unacceptable extent. However, portal dose measurement showed possibilities of If as a dosimeter by showing errors less than 5%, as compared with film measurement.

  • PDF

Minimizing Nutrient Loading from SCB Treated Paddy Rice Fields through Water Management (SCB 액비 시용 논에서 물관리를 통한 양분의 수계 부하 최소화 방안)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Kang, Seong-Soo;Jung, Goo-Bok;Hong, Seung-Chang;Chae, Mi-Jin;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.671-675
    • /
    • 2012
  • This study was conducted to establish the BMPs (Best Management Practices) for preventing pollutant loadings from paddy rice field applied livestock liquid manure from 2008 through 2011. Cultivated paddy rice fields (Gyeonggi province, Korea) were treated with SCB (Slurry composting and bio-filtration process) liquid fertilizer. The BMPs for paddy rice field developed in this study includes: 1) the controlling a drainage water gate in paddy rice field from right after SCB liquid fertilizer application to 3 weeks after rice transplanting; 2) livestock liquid fertilizer application to paddy rice soils in 20 days before rice transplanting to encourage the utilization of liquid fertilizer; 3) preservation of surface water depth to 5 cm in a paddy field right after SCB liquid fertilizer applied to minimize a water pollution and enhance the utilization of liquid fertilizer; and 4) blocking a water gate at least for 2 days to inactivate E. coli survival. The findings of this study will provide useful and practical guideline to applicators of agricultural soil in deciding appropriate handling and time frames for preventing pollution of water quality for sustainable agriculture.

Hydrologic and Hydraulic Factors Affecting the Long-term Treatment Performance of an Urban Stormwater Tree Box Filter (도시 강우유출수를 처리하는 나무여과상자의 장기 처리효율에 영향을 주는 수리학적 및 수문학적 인자 연구)

  • Geronimo, Franz Kevin F.;Hong, Jungsun;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.715-721
    • /
    • 2017
  • Tree box filters, an example of bioretention systems, were compacted and versatile urban stormwater low impact development technique which allowed volume and water quality treatment performance to be adjusted based on the hydrologic, runoff quality and catchment characteristics. In this study, the overall performance of a 6 year-old tree box filter receiving parking lot stormwater runoff was evaluated. Hydrologic and hydraulic factors affecting the treatment performance of the tree box filter were also identified and investigated. Based on the results, the increase in rainfall depth caused a decrease in hydrologic and hydraulic performance of the tree box filter including volume, average flow, and peak flow reduction (r = -0.53 to -0.59; p<0.01). TSS, organics, nutrients, and total and soluble heavy metals constituents were significantly reduced by the system through media filtration, adsorption, infiltration, and evapotranspiration mechanisms employed in the tree box filter (p<0.001). This significant pollutant reduction by the tree box filter was also found to have been caused by hydrologic and hydraulic factors including volume, average flow, peak flow, hydraulic retention time (HRT) and runoff duration. These findings were especially useful in applying similarly designed tree box filter by considering tree box filter surface area to catchment area of less than 1 %.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

A Study on the Optimal Operating Conditions for Removal of Nutrient Influential Substances Using Functional Media (기능성 여재를 활용한 부영양화 영양물질 제거의 최적 운전조건 연구)

  • Lee, Jong-Jun;Oh, Jong-Min;Choi, Seung-Jong;Kim, Ki-Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.549-555
    • /
    • 2019
  • The purpose of this study is to ensure optimal operating conditions for improving the removal efficiency of phosphorus (P) and nitrogen (N) that are the causative agents of eutrophication by utilizing functional media. The main ingredients of the functional media used in this study are Si, Al, and Fe, SiO2, KAlSiO3O8, Al2O2·2SiO2O, H3Al2Si2O9, Fe3O4O), and berylite. To identify the maximum efficiency of the filtration process, the processing efficiency experiment was carried out according to flow method, velocity, and thickness of residual media. The flow method carried out two experiments, 50 m/day, 100 m/day, 150 m/day, 200 m/day, 250 m/day, and 20 cm, 40 cm, 50 cm, 60 cm, 80 cm of lead depth. Experiments have shown that SS, T-N, and T-P all showed higher elimination efficiency of the upflow current conditions than the downflow current conditions, and that the processing efficiency of the linearity is the highest at SS 50 m/day, T-N 150 m/day and T-P 100 m/day. In addition, the analysis of the removal efficiency according to the residual thickness showed that SS, T-N, and T-P all showed the highest efficiency at 60 cm. In addition, the analysis of the removal efficiency according to the residual thickness showed that SS, T-N, and T-P all showed the highest efficiency at 60 cm. It is considered desirable to set the top-down flow conditions and residual thickness of 60 cm and adjust the velocity of the line according to the target media for removal.