• Title/Summary/Keyword: Depth dose distribution

Search Result 160, Processing Time 0.016 seconds

A Consideration on the Characteristics of Electron Beam Dose Distributions for Clinical Applications (임상적용을 위한 전자선의 선량분포 특성에 대한 고찰)

  • Cha, Dong-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • High energy electron beams were to concentrically dose inside a tumor and more energy is a shape decreased of dose. Therefore, it is useful to radiation therapy of a tumor. Also high energy electron beams ionized into collision with a atom in structure material of tissue and it has big changes to dose distribution by multiple scattering. The study had to establish characteristic of electron beams from interaction of electron beams and materials. Experiment method was to measure dependence of electron beam central axis for depth dose curve, field flatness and symmetry and field size dependence. The results were able to evaluate data for a datum pint of electron beam. Also radiotherapy has to be considered for not only energy pencil of lines but characteristic, electron guide and isodose curves distribution.

  • PDF

Peripheral Dose Distributions of Clinical Photon Beams (광자선에 의한 민조사면 경계영역의 선량분포)

  • 김진기;김정수;권형철
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • The region, near the edge of a radiation beam, where the dose changes rapidly according to the distance from the beam axis is known as the penumbra. There is a sharp dose gradient zone even in megavoltage photon beams due to source size, collimator, lead alloy block, other accessories, and internal scatter ray. We investigate dosimetric characteristics on penumbra regions of a standard collimator and compare to those of theoritical model for the optimal use of the system in radiotherapy. Peripheral dose distribution of 6 W Photon beams represents penumbral forming function as the depth. Also we have discussed that the peripheral dose distribution of clinical photon beams, differences between calculation dose use of emperical penumbral forming function and measurements in penumbral region. Predictions by emperical penumbral forming functions are compared with measurements in 3-dimensional water phantom and it is shown that the method is capable of reproduceing the measured peripheral dose values usually to within the statistical uncertainties of the data. The semiconductor detector and ion chamber were positioned at a dmax depth, 5cm depth, 10cm depth, and its specific ratio was determined using a scanning data. The effective penumbra, the distance from 80% to 20% isodose lines were analyzed as a function of the distance. The extent of penumbra will also expand with depth increase. Difference of measurement value and model functions value according to character of the detector show small error in dose distribution of the peripheral dose.

  • PDF

Geant4-DICOM Interface-based Monte Carlo Simulation to Assess Dose Distributions inside the Human Body during X-Ray Irradiation

  • Kim, Sang-Tae
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.52-59
    • /
    • 2012
  • This study uses digital imaging and communications in medicine (DICOM) files acquired after CT scan to obtain the absorbed dose distribution inside the body by using the patient's actual anatomical data; uses geometry and tracking (Geant)4 as a way to obtain the accurate absorbed dose distribution inside the body. This method is easier to establish the radioprotection plan through estimating the absorbed dose distribution inside the body compared to the evaluation of absorbed dose using thermo-luminescence dosimeter (TLD) with inferior reliability and accuracy because many variables act on result values with respect to the evaluation of the patient's absorbed dose distribution in diagnostic imaging and the evaluation of absorbed dose using phantom; can contribute to improving reliability accuracy and reproducibility; it makes significance in that it can implement the actual patient's absorbed dose distribution, not just mere estimation using mathematical phantom or humanoid phantom. When comparing the absorbed dose in polymethly methacrylate (PMMA) phantom measured in metal oxide semiconductor field effect transistor (MOSFET) dosimeter for verification of Geant4 and the result of Geant4 simulation, there was $0.46{\pm}4.69%$ ($15{\times}15cm^2$), and $-0.75{\pm}5.19%$ ($20{\times}20cm^2$) difference according to the depth. This study, through the simulation by means of Geant4, suggests a new way to calculate the actual dose of radiation exposure of patients through DICOM interface.

Evaluation of Dose Distribution of 6 MV X-ray using Optical Dosimetry (광 도시메트리시스템을 이용한 치료용 6 MV X선 선량분포 평가)

  • Kim, Sunghwan
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.925-932
    • /
    • 2019
  • In this paper, we developed optical dosimetry system with a plastic scintillator, a commercial 50 mm, f1.8 lens, and a commercial high-sensitivity CMOS (complementary metal-oxide semiconductor) camera. And, the correction processors of vignetting, geometrical distortion and scaling were established. Using the developed system, we can measured a percent depth dose, a beam profile and a dose linearity for 6 MV medical LINAC (Linear Accelerator). As results, the optically measured percent depth dose was well matched with the measured percent depth dose by ion-chamber within 2% tolerance. And the determined flatness was 2.8%. We concluded that the optical dosimetry system was sufficient for application of absorbed dose monitoring during radiation therapy.

Surface Treatment of Eggshells with Low-Energy Electron Beam

  • Kataoka, Noriaki;Kawahara, Daigo;Sekiguchi, Masayuki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.8-13
    • /
    • 2021
  • Background: Salmonella enteritidis (SE) was the main cause of the pandemic of foodborne salmonellosis. The surface of eggs' shells can be contaminated with this bacterium; however, washing them with sodium hypochlorite solution not only reduces their flavor but also heavily impacts the environment. An alternative to this is surface sterilization using low-energy electron beam. It is known that irradiation with 1 kGy resulted in a significant 3.9 log reduction (reduction factor of 10,000) in detectable SE on the shell. FAO/IAEA/WHO indicates irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard. On the other hand, the Food and Drug Administration has deemed a dose of up to 3 kGy is allowable for eggs. However, the maximum dose permitted to be absorbed by an edible part (i.e., internal dose) is 0.1 Gy in Japan and 0.5 Gy in European Union. Materials and Methods: The electron beam (EB) depth dose distribution in the eggshell was calculated by the Monte Carlo method. The internal dose was also estimated by Monte Carlo simulation and experimentation. Results and Discussion: The EB depth dose distribution for the eggshells indicated that acceleration voltages between 80 and 200 kV were optimal for eggshell sterilization. It was also found that acceleration voltages between 80 and 150 kV were suitable for reducing the internal dose to ≤ 0.10 Gy. Conclusion: The optimum irradiative conditions for sterilizing only eggshells with an EB were between 80 and 150 kV.

A Study on Dobe Distribution outside Co-60 $\gamma$ Ray ana 10MV X Ray Fields ($^{60}Co\;\gamma$선과 10MV X선의 조사면 밖의 선량분포에 관한 연구)

  • Kang, Wee-Saing;Huh, Seung-Jae;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.271-280
    • /
    • 1984
  • The peripheral dose, defined as the dose outside therapeutic photon fields, which is responsible for the functional damage of the critical organs, fetus, and radiation. induced carcinogenesis, has been investigated for $^{60}Co\;\gamma$ ray and 10 MV Xray. It was measured by silicon diode controlled by semiautomated water phantom without any shielding or with lead plate of HVL thickness put horizontally or vertically to shield stray radiations. Authors could obtain following results. 1. The peripheral dose was larger than $0.7\%$ of central axis maximum dose even at 20cm distance from field margin. That is clinically significant, so it should be reduced. 2. Even for square fields of 10 MV Xray, radial peripheral dose distribution did not coincide with transverse distribution, because of the position of collimator jaws. 3. Between surface and $d_m$, the peripheral dose distributions show a pattern of the dose distribution of electron beams and the maximum doss was approximately proportional to the length of a side of square field. 4. The peripheral doses depended on radiation quality, field size, distance from field margin and depth in water. Distance from field margin was the most important factor. 5. Except for near surface, the peripheral dose from phantom was approximately equal to that from therapy unit. 6. To reduce the surface dose outside fields, therapist should shield stray radiations from therapy unit by lead plate of at least one HVL for 10 MV X-ray and by bolus equivalent to tissue of 0.5cm thickness for $^{60}Co$. 7. To reduce the dose at depth deeper than $d_m$, it is desirable to shield stray radiations from therapy unit by lead.

  • PDF

Evaluation of Electron Beam Dose Distribution by Age Diffusion Equation (연령 확산 이론에 의한 전자선의 조직내 선량분포 평가)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.4 no.1
    • /
    • pp.29-39
    • /
    • 1993
  • Electron beams have found unique and complementary used in the treatment of cancer, but it's very difficult to delineate dose distribution, because of multi-collisions. Numerical solution is more usefull to describe electron distributed in tissue. A semi-empirical eqution is given for the dose at any point at various depths in water. This equation is a modificated model which was based on solutions of a general age diffusion equation. Parameters have been calulated from electron beams data with energies 6~18MeV form a LINAC for use in computerised dosimetry calculations. The depth doses and isodose curves are predicted as a function of the practical range, source skin distance and field size. Depth dose accuracy have been achieved 2% above 50% depth dose and 5% at lower doses, relative to maximum dose. Also, the shape of the isodose curves with the constrictions at higher dose and bulging ot lower values are accurately predicted. Computer calculated beams have been used to generate ever isodose distribution for certain clinical situations.

  • PDF

Development and Application of 3-Dimensional Shielding Analysis Program to Analyze Total Ionizing Dose Level depending on the Satellite Structure Model (위성구조모델에 따른 방사선 총 이온화 조사량 예측을 위한 3차원 차폐두께 분석 프로그램의 개발 및 응용)

  • Cho, Young-Jun;Lee, Chang-Ho;Lee, Choon-Woo;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.68-75
    • /
    • 2008
  • Space radiation environments depend on satellite mission orbit, period, and date, and it can be predicted by simulation. Total Ionizing Dose(TID) can be predicted by Dose-depth Curve which only inform the dose level depending on the shielding thickness. So detail effective shielding analysis considering real structure is necessary to predict part level TID. For this purpose, program is developed to calculate shielding thickness distribution by structure modeling and ray trace from certain point in the structure. Finally TID at certain point in the 3-dimensional structure can be calculated by integration of shielding distribution result and dose-depth curve data. Using this program, TID is analyzed at part level certain point by modeling of equipment box structure in the satellite.

  • PDF

Analysis of Dose Distribution of Rectal IORT Cone (Rectal IORT cone의 선량분포에 관한 연구)

  • 김성규;신세원;김명세
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.45-52
    • /
    • 1992
  • Authors started IORT for stomach cancer patient on 1988 and rectal cancer on 1991. We devloped various sized. shaped IORT cones for better clinical application and homogeneous surface and depth dose distribution. Authors obtained results as following. 1. The acryl cover fixed on the end for rectal IORT cone not only improvement of surface dose but also flattness of dose distribution. 2. Dose distribution of elliptical cone were shown almost 100% at inner field. 3. The output with acryl cone size were similar output of made electron cone.

  • PDF

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • 지영훈;이동한;류성렬;권수일;신동오;박성용
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.45-57
    • /
    • 1997
  • It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine, European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induces the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. For measuring the absorbed doses and the dose distribution of fast neutron beam, we used IC-17 and IC-18 ion chambers manufactured by A-150 plastic(tissue-equivalent material), IC-17M ion chamber manufactured by magnesium, TE gas and Ar gas, and RDM 2A electrometer. The magnitude of gamma-contamination intermingled with fast neutron beam was about 13% at 5cm depth of standard irradiated field, and increased as the depth was increased. At the central axis the maximum dose depth and 50% dose depth were 1.32cm and 14.8cm, respectively. The surface dose rate was 41.6-54.1% throughout the entire irradiated fields and increased as the irradiated fields were increased. Beam profile was that the horn effect of about 7.5% appeared at 2.5cm depth and the flattest at 10cm depth.

  • PDF