• 제목/요약/키워드: Depth dose

검색결과 507건 처리시간 0.028초

4MV X-선을 이용한 조직보상체 두께비 연구 및 응용 (A study on tissue compensator thickness ratio and an application for 4MV X-rays)

  • 김영범;정희영;권영호;김유현
    • 대한방사선치료학회지
    • /
    • 제8권1호
    • /
    • pp.55-61
    • /
    • 1996
  • A radiation beam incident on irregular or sloping surface produces an inhomogeneity of absorbed dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator should be made based on experimentally measured thickness ratio. The thickness ratio depends on beam energy, distance from the tissue compensator to the surface of patient, field size, treatment depth, tissue deficit and other factors. In this study, the thickness ratio was measured for various field size of $5cm{\times}5cm,\;10cm{\times}10cm,\;15cm{\times}15cm,\;20cm{\times}20cm$ for 4MV X-ray beams. The distance to the compensator from the X-ray target was fixed, 49cm, and measurement depth was 3, 5, 7, 9 cm. For each measurement depth, the tissue deficit was changed from 0 to(measurement depth-1)cm by 1cm increment. As a result, thickness ratio was decreased according to field size and tissue deficit was increased. Use of a representative thickness ratio for tissue compensator, there was $10\%$ difference of absorbed dose but use of a experimentally measured thickness ratio for tissue compensator, there was $2\%$ difference of absorbed dose. Therefore, it can be concluded that the tissue compensator made by experimentally measured thickness ratio can produce good distribution with acceptable inhomogeneity and such tissue compensator can be effectively applied to clinical radiotherapy.

  • PDF

Water Phantom 속 Conventional X-ray 중심축상의 깊이 선량 백분율 (Central Axis Percentage Depth-Dose in a Water Phantom Irradiated by Conventional X-rays)

  • 김원식;하석호;황선태;오장진;전재식
    • Journal of Radiation Protection and Research
    • /
    • 제12권1호
    • /
    • pp.1-11
    • /
    • 1987
  • X-선 target 으로 부터 water phantom($30{\times}30{\times}30cm^3$) 표면까지 1m이고 이 지점에서 비임 크기가 $5cm{\phi},\;10cm{\phi},\;15cm{\phi}$인 경우 phantom 표면으로 부터 X-선 중심축을 따라 깊이 2.5cm의 기준점으로 부터깊이 20cm까지 2.5cm 간격으로 깊이-선량 백분율, P(%)을 추정하였다. 사용된 X-선 인가전압 및 전류는 $150{\sim}250kV$ 및 5 mA 이었고 물속 흡수선량률, $\dot{D}_w$은 NE 2571 공동전리함의 조사선량 교정인자 $N_x$로부터 구한 공기 kerma 고정인자 $N_k$를 이용하여 결정하였다. 기준조사선량룰 $\dot{X}_c$은 Exradin A-2공동 전리함을 일본 ETL로부터 교정하여 X-선 선질을 ETL 교정선질과 같도록 반가층을 결정한 후에 측정되었다. 한편, 흡수선량 및 깊이-선량 백분율 측정의 정확도를 검증하기 위해 phantom 속 깊이 5 cm되는 교정점에서 물속흡수선량률, $\dot{D}_w$$N_k$로부터 산출한 값과 Burlin의 일반화된 공동이론을 이용하여 계산한 값을 비교해 보았으며, $N_k$로부터 결정된 깊이-선량 백분율 P(%)을 BJR Suppl. 로부터 구한 값과 비교해 본 결과는 좋은 일치를 보였다.

  • PDF

조영제 사용 전${\cdot}$후 불균질 조직 보정 알고리즘에 따른 선량변화에 대한 연구

  • 김주호;조정희;이석;전병철;박재일
    • 대한방사선치료학회지
    • /
    • 제13권1호
    • /
    • pp.38-46
    • /
    • 2001
  • Purpose : The aim of this study is to investigate the effect of tissue inhomogeneities when appling to contrast medium among Homogeneous, Batho and ETAR dose calculation method in RTP system. Method and Material : We made customized heterogeneous phantom it filled with water or contrast medium slab. Phantom scan data have taken PQ 5000 (CT scanner, Marconi, USA) and then dose was calculated in 3D RTP (AcQ-Plan, Marconi, USA) depends on dose calculation algorithm (Homogeneous, Batho, ETAR). The dose comparisons were described in terms of 2D isodose distribution, percent depth dose data, effective path length and monitor unit. Also dose distributions were calculated with homogeneous and inhomogeneous correction algorithm, Batho and ETAR, in each patients with different clinical sites. Results : Result indicated that Batho and ETAR method gave rise to percent depth dose deviation $1.5{\sim}2.7\%,\;2.3{\sim}3.5\%$ (6MV, field size $10{\times}10cm^2$) in each status with and without contrast medium. Also show that effective path lengths were more increase in contrast status (23.14 cm) than Non-contrast (22.07 cm) about $4.9\%$ or 10.7 mm (In case Hounsfield Unit 270) and these results were similary showned in each patient with different clinical site that was lung. prostate, liver and brain region. Concliusion : In conclusion we shown that the use of inhomogeneity correction algorithm for dose calculation in status of injected contrast medium can not represent exact dose at GTV region. These results mean that patients will be more irradiated photon beam during radiation therapy.

  • PDF

방사선치료에서 3D 프린터를 이용한 기능적 조직보상체의 제작 (Manufacturing a Functional Bolus Using a 3D printer in Radiation Therapy)

  • 이이성;김정구
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권1호
    • /
    • pp.9-14
    • /
    • 2020
  • Commercial plate bolus is generally used for treatment of surface tumor and required surface dose. We fabricated 3D-printed bolus by using 3D printing technology and usability of 3D-printed bolus was evaluated. RT-structure of contoured plate bolus in the TPS was exported to DICOM files and converted to STL file by using converting program. The 3D-printed bolus was manufactured with rubber-like translucent materials using a 3D printer. The dose distribution calculated in the TPS and compared the characteristics of the plate bolus and the 3D printed bolus. The absolute dose was measured inserting an ion chamber to the depth of 5 cm and 10 cm from the surface of the blue water phantom. HU and ED were measured to compare the material characteristics. 100% dose was distributed at Dmax of 1.5 cm below the surface when was applied without bolus. When the plate bolus and 3D-plate bolus were applied, dose distributed at 0.9 cm and 0.8 cm below the surface of the bolus. After the comparative analysis of the radiation dose at the reference depth, differences in radiation dose of 0.1 ~ 0.3% were found, but there was no difference dose. The usability of the 3D-printed bolus was thus confirmed and it is considered that the 3D-printed bolus can be applied in radiation therapy.

피부선량을 기준으로 0.511 MeV 감마선에 대한 납 차폐체의 산란선 및 차폐 효율 분석 (Analysis of Scattering Rays and Shielding Efficiency through Lead Shielding for 0.511 MeV Gamma Rays Based on Skin Dose)

  • 장동근;박은태
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권4호
    • /
    • pp.259-264
    • /
    • 2020
  • Radiation causes radiation hazards in the human body. In Korea, a case of radiation necrosis occurred in 2014. In this study, the scatter and shielding efficiency according to lead shielding were classified into epidermis and dermis for 0.511 MeV used in nuclear medicine. In this study, experiments were conducted using the slab phantom that represents calibration and the dose of human trunk. Experimental results showed that the shielding rate of 0.25 mmPb was 180% in the epidermis and 96% in the dermis. Shielding at 0.5mmPb showed shielding rates of 158%in the epidermis and 82% in the dermis. As a result of measuring the absorbed dose by subdividing the thickness of the dermis into 0.5 mm intervals, when the shielding was carried out at 0.25 mmPb, the dose appeared to be about 120% at 0.5 mm of the dermis surface, and the dose was decreased at the subsequent depth. Shielding at 0.5 mmPb, the dose appeared to be about 101% at the surface 0.5 mm, and the dose was measured to decrease at the subsequent depth. This result suggests that when lead aprons are actually used, the scattering rays would be sufficiently removed due to the spaces generated by the clothes and air, Therefore, the scattered ray generated from lead will not reach the human body. The ICRU defines the epidermis (0.07), in which the radiation-induced damage of the skin occurs, as the dose equivalent. If the radiation dose of the dermis is considered in addition, it will be helpful for the evaluation of the prognosis for radiation hazard of the skin.

동일 기종 선형가속기간 8 MV 광자선에 대한 빔 매칭 정확도 평가 (Evaluation of Beam-Matching Accuracy for 8 MV Photon Beam between the Same Model Linear Accelerator)

  • 김연래;정진범;강성희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권2호
    • /
    • pp.105-114
    • /
    • 2020
  • This study aimed to assess of beam-matching accuracy for an 8 MV beam between the same model linear accelerators(Linac) commissioned over two years. Two models were got the customer acceptance procedure(CAP) criteria. For commissioning data for beam-matched linacs, the percentage depth doses(PDDs), beam profiles, output factors, multi-leaf collimator(MLC) leaf transmission factors, and the dosimetric leaf gap(DLG) were compared. In addition, the accuracy of beam matching was verified at phantom and patient levels. At phantom level, the point doses specified in TG-53 and TG-119 were compared to evaluate the accuracy of beam modelling. At patient level, the dose volume histogram(DVH) parameters and the delivery accuracy are evaluated on volumetric modulated arc therapy(VMAT) plan for 40 patients that included 20 lung and 20 brain cases. Ionization depth curve and dose profiles obtained in CAP showed a good level for beam matching between both Linacs. The variations in commissioning beam data, such as PDDs, beam profiles, output factors, TF, and DLG were all less than 1%. For the treatment plans of brain tumor and lung cancer, the average and maximum differences in evaluated DVH parameters for the planning target volume(PTV) and the organs at risk(OARs) were within 0.30% and 1.30%. Furthermore, all gamma passing rates for both beam-matched Linacs were higher than 98% for the 2%/2 mm criteria and 99% for the 2%/3 mm criteria. The overall variations in the beam data, as well as tests at phantom and patient levels remains all within the tolerance (1% difference) of clinical acceptability between beam-matched Linacs. Thus, we found an excellent dosimetric agreement to 8 MV beam characteristics for the same model Linacs.

Electron Energy Distribution for a Research Electron LINAC

  • Lim, Heuijin;Lee, Manwoo;Yi, Jungyu;Kang, Sang Koo;Kim, Me Young;Jeong, Dong Hyeok
    • 한국의학물리학회지:의학물리
    • /
    • 제28권2호
    • /
    • pp.49-53
    • /
    • 2017
  • The energy distribution was calculated for an electron beam from an electron linear accelerator developed for medical applications using computational methods. The depth dose data for monoenergetic electrons from 0.1 MeV to 8.0 MeV were calculated by the DOSXYZ/nrc code. The calculated data were used to generate the energy distribution from the measured depth dose data by numerical iterations. The measured data in a previous work and an in-house computer program were used for the generation of energy distribution. As results, the mean energy and most probable energy of the energy distribution were 5.7 MeV and 6.2 MeV, respectively. These two values agreed with those determined by the IAEA dosimetry protocol using the measured depth dose.

광자선 소조사면의 선량 측정에 관한 연구 (A Study on Dosimetry for Small Fields of Photon Beam)

  • 강위생;하성환;박찬일
    • 한국의학물리학회지:의학물리
    • /
    • 제5권2호
    • /
    • pp.57-68
    • /
    • 1994
  • 선형가속기에 의한 뇌정위적 방사선수술에 적용되는 원형 소조사변의 선량분포를 측정하기 위해 측정기 선정 이유와 선축 결정, 자체 제작한 소형 물 팬톰에 의한 선량분포 측정시 고려해야 할 점에 대해 논의하고, 치료계획에 필요한 자료인 Clinac-18의 10MV X-선의 TMR, OAR, 조사면 계수와 같은 선량분포 측정결과를 보고하고자 한다. 뇌정위적 방사선수술에 권고되고 있는 조사면 크기가 3cm 이하의 작은 조사면에 대한 선량 분포를 측정하기 위해서는 크기나 감도에 있어서 적합한 p-형 실리콘(Si) 검출기가 선량에 대한 선형성과 선량율 독립성이 적합한지 측정에 의해 판단하였다. 크기와 형태가 같은 아크릴 통을 두 개 제작하여 호스로 연결하여 하나는 물 팬톰으로 이용하고 다른 하나는 높이를 조절하여 측정기의 깊이를 조절하였다. 측정할 위치에서 직각 방향의 측방선량분포를 측정하여 선축의 위치를 찾았다. SAD 100cm 위치에서 조사면 크기 10, 20, 30, 40mm 네 개 콘에 대하여 TMR을 측정하였으며, 일정한 선원-측정기간 거리(SCD)에서 최대선량점깊이(d$_{max}$) 및 6, 10, 15cm 깊이에서 OAR을 측정하여 비교하였다. 조사면 계수는 MU당 SAD, d$_{max}$에서 콘에 대한 선량으로 실리콘 검출기로 측정하였다. 실리콘 검출기는 선량에 대한 선형성이 거의 완벽하였으며 감도는 선량율이 증가함에 따라 감소하였다. 낮은 선량율 때문에 조사면 밖의 선량을 약간 과대평가할 수 있을지라도 100MU/min 이상의 선량율에 대해서는 일정하였다. 직각 방향의 측방선량분포 측정에 의하여 선축을 찾는 방식은 간편하였다. 1cm 두께의 아크릴 판을 보조 물통 아래에 삽입ㆍ제거하는 방식으로 측정기의 깊이 조절도 간편하면서 정확하였다. 측정에 의한 TMR, OAR, 조사면 계수는 충분히 정확하여 뇌정위적 방사선수술의 치료계획에 이용할 수 있었으며, OAR은 조사면 범위 내에서는 깊이에 거의 무관하였다. 실리콘 검출기는 소조사면 선량분포 측정에 적합하였으며 직각 방향의 측방선량분포의 측정으로 0.05mm까지 정확히 선축을 찾을 수 있었고, 보조 물통과 아크릴 판을 이용하여 측정기의 깊이를 조절하는 것이 용이하였다. TMR, OAR, 조사면계수의 측정치는 뇌정위적 방사선수술의 치료 계획에 이용할 수 있을 정도로 정확하였으며, OAR은 하나의 깊이에서 측정해도 충분할 것이라고 사료된다.

  • PDF

유암수술후 방사선치료시 $^{60}Co\;\gamma$선과 전자선 조사야 접합부 선량분포에 관한 연구 (A Study on Dobe Distribution at the Junction of $^{60}CO\;\gamma-Ray$ and Elecron Beam in Postoperative Radiotherapy of Breast Cancer)

  • 강위생;허승재;하성환
    • Radiation Oncology Journal
    • /
    • 제2권1호
    • /
    • pp.149-153
    • /
    • 1984
  • Postoperative radiotherapy of breast cancer makes it possible to reduce loco-regional recurrence of breast cancer. The treatment technique, which can reduce the low-dose region at the junction and lung, is required. To produce proper dose distribution of internal mammary chain and chest wall, authors tried to find the method to expose $^{60}Co\;\gamma-ray$ on internal mammary region and 7MeV electron on chest wall. Exposure time of $^{60}Co\;\gamma$ and monitor unit of 9MeV were selected so that dose of $^{60}Co$ at 4cm depth was the same as that of 7Mev electron at $80\%$ dose depth. The position and direction of electron beam were changed for $^{60}Co$ beam: $0^{\circ},\;5^{\circ}$ for 0cm seperation; $0^{\circ},\;5^{\circ},\;10^{\circ}$ for 0.5cm seperation; $5^{\circ},\;10^{\circ},\;15^{\circ}$ for 1cm seperation. The results are as followings. 1. When the seperation of two fields was increased, dose on the axis of $^{60}Co$ beam was increased and dose at the junction region decreased while the volume of lung to be exposed to high dose and hot spot size were irregularly changed. 2. The dose distribution in the target volume of internal mammary and chest wall was most ideal when the seperation of two fields was $0\~0.5cm$ and the direction of electron beam was parallel to $^{60}Co$ beam.

  • PDF

방사선 치료실 벽면 거리에 따른 심부선량과 표층선량 평가 (Evaluation of Depth Dose and Surface Dose According to Treatment Room Wall Distance)

  • 제재용
    • 한국방사선학회논문지
    • /
    • 제5권3호
    • /
    • pp.121-125
    • /
    • 2011
  • 본 연구는 방사선 치료실 벽면 거리에 따른 표층선량과 심부선량에 관하여 알아보고자 한다. 선형가속기에서 발생하는 고에너지 광자선은 치료기 헤드, 콜리메이터, 환자, 치료실내의 모든 벽과 물질들에 의하여 많은 산란선이 발생된다. 산란선의 측정은 열형광선량계(TLD)를 사용하였다. 선형가속기의 회전중심으로부터 벽까지의 거리는 236, 272, 303과 337 cm로 측정되었다. 6 MV 광자선을 100 cGy와 200 cGy를 조사한 결과 벽까지의 거리가 짧은 236 cm에서 표층선량은 0.49, 0.83 mSv이고, 272 cm에서는 0.41, 0.53 mSv, 303 cm에서는 0.28, 0.57 mSv, 337 cm에서는 0.33, 0.76 mSv로 각각 나타났다. 치료실 벽의 거리에 따라 표층선량은 현저한 차이를 나타내었다. 이러한 결과는 방사선 치료환자의 확률적영향과 관련하여 유용한 자료로 활용될 것이다.