스테레오 영상은 기존의 영상과는 달리 사용자에게 깊이감을 제공한다. 따라서 스테레오 영상을 평가하기 위해서는 새로운 화질평가 모델이 필요하다. 본 논문에서는 스테레오 영상을 위한 객관적 화질평가 방법을 제안한다. 제안된 화질평가 방법은 기존의 화질평가 모델을 기반으로 하여 블로킹 현상과 경계 영역에서의 열화 현상을 검출하였으며, 깊이 정보를 고려하여 시점 간 화질 격차 검출을 통해 알고리즘의 성능을 높이고자 하였다. 제안된 알고리즘의 성능 확인을 위해 스테레오 영상의 주관적 화질평가를 수행하였으며 주관적 화질평가와의 상관성 측면에서 제안 알고리즘이 PSNR에 비해 우수함을 확인하였다.
최근 영상시스템 환경은 2D 비디오카메라에 깊이 카메라가 부착되어 2D 및 3D 어플리케이션을 지원하는 형태로 보편화 되고 있다. 이러한 3차원 멀티미디어 시스템 환경으로의 변화는 비디오 시스템에서 깊이정보 획득을 용이하게 만들었다. 깊이정보는 객체 구분, 배경영역 인지 등에 이용할 수 있는데, 2D 부호화에 이를 이용한다면 높은 부호화 효율을 얻을 수 있다. 따라서, 본 논문에서는 차세대 2D 비디오 코덱인 HEVC 인코더에 반영한 깊이정보 이용 비디오 부호화 방법을 제안한다. 제안방법으로, 현재 부호화하려는 CU가 배경영역에 위치할 경우 1) 주변블록의 SKIP 모드를 참조하여 결정하는 CU 분할 조기 결정, 2) 시간적 위치의 CU 정보를 이용하여 수행하는 CU 분할 구조 제한, 3) 배경영역에 따른 움직임 예측 탐색 범위 제한이 있다. 실험은 HEVC 참조 소프트웨어인 HM 12.0에 적용하였고, 실험결과 40% 이상의 부호화 복잡도가 감소했으며, BD-Bitrate는 0.5% 손실되었다. 특히, 마이크로소프트사에서 개발한 키넥트를 통해 획득한 영상을 이용한 실험 결과에서는 영상 품질의 큰 열화 없이 기존대비 최대 53%의 부호화 복잡도가 감소하는 결과를 나타내어, 향후 실시간 화상통신, 모바일 또는 핸드헬드 환경에서의 비디오 서비스 등에서 광범위하게 적용할 수 있을 것으로 기대된다.
Human activity recognition using depth information is an emerging and challenging technology in computer vision due to its considerable attention by many practical applications such as smart home/office system, personal health care and 3D video games. This paper presents a novel framework of 3D human body detection, tracking and recognition from depth video sequences using spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined to extract human silhouette by considering spatial continuity and constraints of human motion information. While, frame differentiation is used to track human movements. Features extraction mechanism consists of spatial depth shape features and temporal joints features are used to improve classification performance. Both of these features are fused together to recognize different activities using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two challenging depth video datasets. Moreover, our system has significant abilities to handle subject's body parts rotation and body parts missing which provide major contributions in human activity recognition.
This paper describes a 3-DTIP(3-D Tour Into Picture) using depth map for a Korean classical painting being composed of persons and landscape. Unlike conventional TIP methods providing 2-D image or video, our proposed TIP can provide users with 3-D stereoscopic contents. Navigating inside a picture provides more realistic and immersive perception. The method firstly makes depth map. Input data consists of foreground object, background image, depth map, foreground mask. Firstly we separate foreground object and background, make each of their depth map. Background is decomposed into polygons and assigned depth value to each vertexes. Then a polygon is decomposed into many triangles. Gouraud shading is used to make a final depth map. Navigating into a picture uses OpenGL library. Our proposed method was tested on "Danopungjun" and "Muyigido" that are famous paintings made in Chosun Dynasty. The stereoscopic video was proved to deliver new 3-D perception better than 2-D video.
Le, Thanh Ha;Long, Vuong Tung;Duong, Dinh Trieu;Jung, Seung-Won
ETRI Journal
/
제38권6호
/
pp.1114-1123
/
2016
Multi-view video plus depth (MVD) has been widely used owing to its effectiveness in three-dimensional data representation. Using MVD, color videos with only a limited number of real viewpoints are compressed and transmitted along with captured or estimated depth videos. Because the synthesized views are generated from decoded real views, their original reference views do not exist at either the transmitter or receiver. Therefore, it is challenging to define an efficient metric to evaluate the quality of synthesized images. We propose a novel metric-the reduced-reference quality metric. First, the effects of depth distortion on the quality of synthesized images are analyzed. We then employ the high correlation between the local depth distortions and local color characteristics of the decoded depth and color images, respectively, to achieve an efficient depth quality metric for each real view. Finally, the objective quality metric of the synthesized views is obtained by combining all the depth quality metrics obtained from the decoded real views. The experimental results show that the proposed quality metric correlates very well with full reference image and video quality metrics.
시청자에게 입체감과 몰입감을 줄 수 있는 3차원 영상의 제작을 위해서는 장면의 색상 영상과 함께 깊이 정보가 필요하다. 일반적으로 장면의 깊이를 측정하는 깊이 센서에서 획득된 깊이 영상은 매우 작은 해상도를 가진다. 따라서 색상 영상과 함께 3차원 영상 제작에 이러한 깊이 영상을 사용하기 위해서는 저해상도 깊이 영상의 업샘플링 기술이 필요하다. 본 논문에서는 깊이 불연속 정보를 이용하여 저해상도 깊이 영상을 업샘플링하는 방법을 설명한다. 깊이 영상을 업샘플링할 때 가장 민감하게 다루어야 할 깊이 불연속 부분을 고해상도 색상과 저해상도 깊이 영상으로부터 찾아낸다. 그리고 깊이 불연속 부분을 고려하여 깊이 영상 업샘플링을 위한 에너지 함수를 모델링하고, 신뢰 확산(belief propagation) 방법을 이용하여 해상도가 확대된 깊이 영상을 획득한다. 제안하는 방법은 필터 기반이나 에너지 함수 기반의 다른 방법들보다 우수한 성능을 나타내었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제4권6호
/
pp.1209-1221
/
2010
Three dimensional (3D) video is expected to be an important application for broadcast and IP streaming services. One of the main limitations for the transmission of 3D video over IP networks is network bandwidth mismatch due to the large size of 3D data, which causes fatal decoding errors and mosaic-like damage. This paper presents a novel selective frame discard method to address the problem. The main idea of the proposed method is the symmetrical discard of the two dimensional (2D) video frame and the depth map frame. Also, the frames to be discarded are selected after additional consideration of the playback deadline, the network bandwidth, and the inter-frame dependency relationship within a group of pictures (GOP). It enables the efficient utilization of the network bandwidth and high quality 3D IPTV service. The simulation results demonstrate that the proposed method enhances the media quality of 3D video streaming even in the case of bad network conditions.
본 논문에서는 High Efficiency Video Coding(HEVC)을 기반으로 구현된 3D 스케일러블 코덱에서 부호화 효율을 향상시킬 수 있는 기술을 제안한다. 기존의 3D-HEVC에서는 dependent view를 부호화 할 때, 자신의 깊이 영상이 존재하지 않아 이웃 view의 base view의 깊이 영상을 이용하여 텍스처를 부호화한다. 하지만 스케일러블 부호화를 지원하는 형태의 3D-HEVC에서는 자신의 하위 spatial layer의 깊이영상을 이용하여 부호화 할 수 있다. 본 논문에서는 3D 스케일러블 코덱에서 텍스처 정보를 부호화하기 위한 향상된 깊이영상 예측방법을 제안한다. 저자들이 구현한 3D 스케일러블 코덱을 이용하여 제안한 알고리즘으로 실험을 한 결과, 제안하는 알고리즘이 기존 기술 대비 효율적인 것을 확인 할 수 있었다.
본 논문에서는 depth layer partition을 이용한 2D 동영상의 자동 3D 변환 기법을 제안한다. 제안하는 기법에서는 먼저 2D 동영상의 장면 전환점을 검출하여 각각의 프레임 그룹을 설정하여 움직임 연산 과정에서의 오류 확산을 방지하여 깊이맵(depth map) 생성과 정에서 오차를 줄여준다. 깊이정보는 두 가지 방법으로 생성되는데 하나는 영역 분할과 움직임 정보를 이용하여 깊이맵을 추출하는 것이고 다른 하나는 에지 방향성 히스토그램(edge directional histogram)을 이용하는 방법이다. 제안하는 기법에서는 객체와 배경을 분리하는 depth layer partition 과정을 수행한 후 생성된 두 개의 깊이맵을 원 영상에 최적이 되도록 병합하게 된다. 제안된 기법으로 신뢰도 높은 깊이맵과 결과 영상을 생성할 수 있다는 것을 다양한 실험 결과를 통해 알 수 있다.
Rainfall depth is an important meteorological information. Generally, high spatial resolution rainfall data such as road-level rainfall data are more beneficial. However, it is expensive to set up sufficient Automatic Weather Systems to get the road-level rainfall data. In this paper, we propose to use deep learning to recognize rainfall depth from road surveillance videos. To achieve this goal, we collect a new video dataset and propose a procedure to calculate refined rainfall depth from the original meteorological data. We also propose to utilize the differential frame as well as the optical flow image for better recognition of rainfall depth. Under the Temporal Segment Networks framework, the experimental results show that the combination of the video frame and the differential frame is a superior solution for the rainfall depth recognition. The final model is able to achieve high performance in the single-location low sensitivity classification task and reasonable accuracy in the higher sensitivity classification task for both the single-location and the multi-location case.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.