KSII Transactions on Internet and Information Systems (TIIS)
/
v.6
no.4
/
pp.1128-1139
/
2012
With the development of three-dimensional display and related technologies, depth video coding becomes a new topic and attracts great attention from industries and research institutes. Because (1) the depth video is not a sequence of images for final viewing by end users but an aid for rendering, and (2) depth video is simpler than the corresponding color video, fast algorithm for depth video is necessary and possible to reduce the computational burden of the encoder. This paper proposes a fast mode decision algorithm for depth video coding based on depth segmentation. Firstly, based on depth perception, the depth video is segmented into three regions: edge, foreground and background. Then, different mode candidates are searched to decide the encoding macroblock mode. Finally, encoding time, bit rate and video quality of virtual view of the proposed algorithm are tested. Experimental results show that the proposed algorithm save encoding time ranging from 82.49% to 93.21% with negligible quality degradation of rendered virtual view image and bit rate increment.
Chen, Fen;Liu, Sheng;Peng, Zongju;Hu, Qingqing;Jiang, Gangyi;Yu, Mei
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.4
/
pp.1730-1747
/
2018
Multi-view video plus depth (MVD) is a mainstream format of 3D scene representation in free viewpoint video systems. The advanced 3D extension of the high efficiency video coding (3D-HEVC) standard introduces new prediction tools to improve the coding performance of depth video. However, the depth video in 3D-HEVC is time consuming. To reduce the complexity of the depth video inter coding, we propose a fast coding unit (CU) size and mode decision algorithm. First, an off-line trained Bayesian model is built which the feature vector contains the depth levels of the corresponding spatial, temporal, and inter-component (texture-depth) neighboring largest CUs (LCUs). Then, the model is used to predict the depth level of the current LCU, and terminate the CU recursive splitting process. Finally, the CU mode search process is early terminated by making use of the mode correlation of spatial, inter-component (texture-depth), and inter-view neighboring CUs. Compared to the 3D-HEVC reference software HTM-10.0, the proposed algorithm reduces the encoding time of depth video and the total encoding time by 65.03% and 41.04% on average, respectively, with negligible quality degradation of the synthesized virtual view.
The 3D-AVC standard aims at improving coding efficiency by applying new techniques for utilizing intra, inter and view predictions. 3D video scenes are rendered with existing texture video and additional depth map. The depth map comes at the expense of increased computational complexity of the encoding process. For real-time applications, reducing the complexity of 3D-AVC is very important. In this paper, we present a fast intra mode decision algorithm to reduce the complexity burden in the 3D video system. The proposed algorithm uses similarity between texture video and depth map. The best intra prediction mode of the depth map is similar to that of the corresponding texture video. The early decision algorithm can be made on the intra prediction of depth map coding by using the coded intra mode of texture video. Adaptive threshold for early termination is also proposed. Experimental results show that the proposed algorithm saves the encoding time on average 29.7% without any significant loss in terms of the bit rate or PSNR value.
This paper presents a 3D video content generation technique and system that uses the multi-view images and the depth map. The proposed uses 3-view video and depth inputs from the 3-view video camera and depth camera for the 3D video content production. Each camera is calibrated using Tsai's calibration method, and its parameters are used to rectify multi-view images for the multi-view stereo matching. The depth and disparity maps for the center-view are obtained from both the depth camera and the multi-view stereo matching technique. These two maps are fused to obtain more reliable depth map. Obtained depth map is not only used to insert a virtual object to the scene based on the depth key, but is also used to synthesize virtual viewpoint images. Some preliminary test results are given to show the functionality of the proposed technique.
Since July of 2012, the 3D video extension of H.264/AVC has been under development to support the multi-view video plus depth format. In 3D video applications such as multi-view and free-view point applications, synthesized views are generated using coded texture video and coded depth video. Such synthesized views can be distorted by quantization noise and inaccuracy of 3D wrapping positions, thus it is important to improve their quality where possible. To achieve this, the relationship among the depth video, texture video, and synthesized view is investigated herein. Based on this investigation, an edge noise suppression filtering process to preserve the edges of the depth video and a method based on a total variation approach to maximum a posteriori probability estimates for reducing the quantization noise of the coded texture video. The experiment results show that the proposed methods improve the peak signal-to-noise ratio and visual quality of a synthesized view compared to a synthesized view without post processing methods.
3D video is regarded as the next generation contents in numerous applications. The 2D-to-3D video conversion technologies are strongly required to resolve a lack of 3D videos during the period of transition to the full ripe 3D video era. In 2D-to-3D conversion methods, after the depth image of each scene in 2D video is estimated, stereoscopic video is synthesized using DIBR (Depth Image Based Rendering) technologies. This paper proposes a novel depth fusion algorithm that integrates multiple depth cues contained in 2D video to generate stereoscopic video. For the proper depth fusion, it is checked whether some cues are reliable or not in current scene. Based on the result of the reliability tests, current scene is classified into one of 4 scene types and scene-adaptive depth fusion is applied to combine those reliable depth cues to generate the final depth information. Simulation results show that each depth cue is reasonably utilized according to scene types and final depth is generated by cues which can effectively represent the current scene.
Depth-image-based rendering is generally used in real-time 2D-to-3D conversion for 3DTV. However, inaccurate depth maps cause flickering issues between image frames in a video sequence, resulting in eye fatigue while viewing 3DTV. To resolve this flickering issue, we propose a new 2D-to-3D conversion scheme based on fast and robust depth-map generation from a 2D video sequence. The proposed depth-map generation algorithm divides an input video sequence into several cuts using a color histogram. The initial depth of each cut is assigned based on a hypothesized depth-gradient model. The initial depth map of the current frame is refined using color and motion information. Thereafter, the depth map of the next frame is updated using the difference image to reduce depth flickering. The experimental results confirm that the proposed scheme performs real-time 2D-to-3D conversions effectively and reduces human eye fatigue.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.7
/
pp.3018-3038
/
2020
In the stereoscopic or multiview display, the depth video illustrates visual distances between objects and camera. To promote the computational efficiency of depth video encoder, we exploit the intra prediction of depth videos under Versatile Video Coding (VVC) and observe a diverse distribution of intra prediction modes with different coding unit sizes. We propose a hybrid scheme to further boost fast depth video coding. In the first stage, we adaptively predict the HADamard (HAD) costs of intra prediction modes and initialize a candidate list according to the HAD costs. Then, the candidate list is further improved by considering the probability distribution of candidate modes with different CU sizes. Finally, early termination of CU splitting is performed at each CU depth level based on the Bayesian theorem. Our proposed method is incorporated into VVC intra prediction for fast coding of depth videos. Experiments with 7 standard sequences and 4 Quantization parameters (Qps) validate the efficiency of our method.
2D-to-3D video conversion vests 3D effects in a 2D video by generating stereoscopic views using depth cues inherent in the 2D video. This technology would be a good solution to resolve the problem of 3D content shortage during the transition period to the full ripe 3D video era. In this paper, a low-complexity depth generation method for 2D-to-3D video conversion is presented. For temporal consistency in global depth, a pattern-based depth generation method is newly introduced. A low-complexity refinement algorithm for local depth is also provided to improve 3D perception in object regions. Experimental results show that the proposed method outperforms conventional methods in terms of complexity and subjective quality.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.2
/
pp.43-51
/
2014
Multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission, because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This efficient method to compress new contents is suggested to use layered depth image representation and to apply for video compression encoding by using 3D warping. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, we confirmed high compression performance and good quality of reconstructed image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.