• Title/Summary/Keyword: Depth Map Quantization

Search Result 13, Processing Time 0.03 seconds

Effects of Depth Map Quantization for Computer-Generated Multiview Images using Depth Image-Based Rendering

  • Kim, Min-Young;Cho, Yong-Joo;Choo, Hyon-Gon;Kim, Jin-Woong;Park, Kyoung-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2175-2190
    • /
    • 2011
  • This paper presents the effects of depth map quantization for multiview intermediate image generation using depth image-based rendering (DIBR). DIBR synthesizes multiple virtual views of a 3D scene from a 2D image and its associated depth map. However, it needs precise depth information in order to generate reliable and accurate intermediate view images for use in multiview 3D display systems. Previous work has extensively studied the pre-processing of the depth map, but little is known about depth map quantization. In this paper, we conduct an experiment to estimate the depth map quantization that affords acceptable image quality to generate DIBR-based multiview intermediate images. The experiment uses computer-generated 3D scenes, in which the multiview images captured directly from the scene are compared to the multiview intermediate images constructed by DIBR with a number of quantized depth maps. The results showed that there was no significant effect on depth map quantization from 16-bit to 7-bit (and more specifically 96-scale) on DIBR. Hence, a depth map above 7-bit is needed to maintain sufficient image quality for a DIBR-based multiview 3D system.

Enhancing Depth Accuracy on the Region of Interest in a Scene for Depth Image Based Rendering

  • Cho, Yongjoo;Seo, Kiyoung;Park, Kyoung Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2434-2448
    • /
    • 2014
  • This research proposed the domain division depth map quantization for multiview intermediate image generation using Depth Image-Based Rendering (DIBR). This technique used per-pixel depth quantization according to the percentage of depth bits assigned in domains of depth range. A comparative experiment was conducted to investigate the potential benefits of the proposed method against the linear depth quantization on DIBR multiview intermediate image generation. The experiment evaluated three quantization methods with computer-generated 3D scenes, which consisted of various scene complexities and backgrounds, under varying the depth resolution. The results showed that the proposed domain division depth quantization method outperformed the linear method on the 7- bit or lower depth map, especially in the scene with the large object.

A Study of the Use of Step by Preprocessing and Dynamic Programming for the Exact Depth Map (정확한 깊이 맵을 위한 전처리 과정과 다이나믹 프로그래밍에 관한 연구)

  • Kim, Young-Seop;Song, Eung-Yeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • The stereoscopic vision system is the algorithm to obtain the depth of target object of stereo vision image. This paper presents an efficient disparity matching method using nagao filter, octree color quantization and dynamic programming algorithm. we describe methods for performing color quantization on full color RGB images, using an octree data structure. This method has the advantage of saving a lot of data. We propose a preprocessing stereo matching method based on Nagao-filter algorithm using color information. using the nagao filter, we could obtain effective depth map and using the octree color quantization, we could reduce the time of computation.

A Study on Depth Map Quantization for Multiview Image Generation (다시점 입체 영상 생성을 위한 깊이 지도 양자화 방법 연구)

  • Choi, Ji-Young;Chun, Su-Min;Cho, Yongjoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.635-636
    • /
    • 2013
  • In this research, a method that quantize the depth information to improve the quality of the intermediate view images when DIBR (Depth Image Based Rendering) is used. This paper specially describes the uniform quantization that divides the depth information equally and non-uniform quantization that allocates more depth information in certain areas to improve the quality of the area.

  • PDF

Depth-map coding using the block-based decision of the bitplane to be encoded (블록기반 부호화할 비트평면 결정을 이용한 깊이정보 맵 부호화)

  • Kim, Kyung-Yong;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.232-235
    • /
    • 2010
  • This paper proposes an efficient depth-map coding method. The adaptive block-based depth-map coding method decides the number of bit planes to be encoded according to the quantization parameters to obtain the desired bit rates. So, the depth-map coding using the block-based decision of the bit-plane to be encoded proposes to free from the constraint of the quantization parameters. Simulation results show that the proposed method, in comparison with the adaptive block-based depth-map coding method, improves the average BD-rate savings by 3.5% and the average BD-PSNR gains by 0.25dB.

Enhancement Method of Depth Accuracy in DIBR-Based Multiview Image Generation (다시점 영상 생성을 위한 DIBR 기반의 깊이 정확도 향상 방법)

  • Kim, Minyoung;Cho, Yongjoo;Park, Kyoung Shin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.237-246
    • /
    • 2016
  • DIBR (Depth Image Based Rendering) is a multimedia technology that generates the virtual multi-view images using a color image and a depth image, and it is used for creating glasses-less 3-dimensional display contents. This research describes the effect of depth accuracy about the objective quality of DIBR-based multi-view images. It first evaluated the minimum depth quantization bit that enables the minimum distortion so that people cannot recognize the quality degradation. It then presented the comparative analysis of non-uniform domain-division quantization versus regular linear quantization to find out how effectively express the accuracy of the depth information in same quantization levels according to scene properties.

Improved Contour Region Coding Method based on Scalable Depth Map for 3DVC (계층적 깊이 영상 기반의 3DVC에서 윤곽 부분 화질 개선 기법)

  • Kang, Jin-Mi;Jeong, Hye-Jeong;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.492-500
    • /
    • 2012
  • In this paper, improved contour region coding method is proposed to accomplish better depth map coding performance. First of all, in order to use correlation between color video and depth map, a structure in SVC is applied to 3DVC. This can reduce bit-rate of the depth map while supporting the video to be transferred via various collection of network. As the depth map is mainly used to synthesize videos from different views, corrupted contour region can damage the overall quality of video. We hereby adapt a new differential quantization method when separating the contour region. The experimental results show that the proposed method can improve video quality by 0.06~0.5dB which translate the bit rate saving by 0.1~1.15%, when compared to the reference software.

Post-processing of 3D Video Extension of H.264/AVC for a Quality Enhancement of Synthesized View Sequences

  • Bang, Gun;Hur, Namho;Lee, Seong-Whan
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.242-252
    • /
    • 2014
  • Since July of 2012, the 3D video extension of H.264/AVC has been under development to support the multi-view video plus depth format. In 3D video applications such as multi-view and free-view point applications, synthesized views are generated using coded texture video and coded depth video. Such synthesized views can be distorted by quantization noise and inaccuracy of 3D wrapping positions, thus it is important to improve their quality where possible. To achieve this, the relationship among the depth video, texture video, and synthesized view is investigated herein. Based on this investigation, an edge noise suppression filtering process to preserve the edges of the depth video and a method based on a total variation approach to maximum a posteriori probability estimates for reducing the quantization noise of the coded texture video. The experiment results show that the proposed methods improve the peak signal-to-noise ratio and visual quality of a synthesized view compared to a synthesized view without post processing methods.

Digital Watermarking Algorithm for Multiview Images Generated by Three-Dimensional Warping

  • Park, Scott;Kim, Bora;Kim, Dong-Wook;Seo, Youngho
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 2015
  • In this paper, we propose a watermarking method for protecting the ownership of three-dimensional (3D) content generated from depth and texture images. After selecting the target areas to preserve the watermark by depth-image-based rendering, the reference viewpoint image is moved right and left in the depth map until the maximum viewpoint change is obtained and the overlapped region is generated for marking space. The region is divided into four subparts and scanned. After applying discrete cosine transform, the watermarks are inserted. To extract the watermark, the viewpoint can be changed by referring to the viewpoint image and the corresponding depth image initially, before returning to the original viewpoint. The watermark embedding and extracting algorithm are based on quantization. The watermarked image is attacked by the methods of JPEG compression, blurring, sharpening, and salt-pepper noise.

Analysis of convergent looking stereo camera model (교차 시각 스테레오 카메라 모델 해석)

  • 이적식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.50-62
    • /
    • 1996
  • A parallel looking stereo camera was mainly used as an input sensor for digital image processing, image understanding and the extraction of 3 dimensional information. Theoretical analysis and performance evaluation are dealt in this paper for a convergent looking stereo camera model having a fixation point with the result of crossing optical axes. The quantization error, depth resolution and equidepth map due to digital pixels, and the misalignments effects of pan, tilt and roll angles are analyzed by using rhe relationship between the reference and image coordinate systems. Also horopter, epipolar lines, probability density functions of the depth error, and stereo fusion areas for the two camera models are discussed.

  • PDF