• Title/Summary/Keyword: Depth & Width

Search Result 1,641, Processing Time 0.028 seconds

Evaluation of accuracies of genomic predictions for body conformation traits in Korean Holstein

  • Md Azizul Haque;Mohammad Zahangir Alam;Asif Iqbal;Yun Mi Lee;Chang Gwon Dang;Jong Joo Kim
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.555-566
    • /
    • 2024
  • Objective: This study aimed to assess the genetic parameters and accuracy of genomic predictions for twenty-four linear body conformation traits and overall conformation scores in Korean Holstein dairy cows. Methods: A dataset of 2,206 Korean Holsteins was collected, and genotyping was performed using the Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The traits investigated included body traits (stature, height at front end, chest width, body depth, angularity, body condition score, and locomotion), rump traits (rump angle, rump width, and loin strength), feet and leg traits (rear leg set, rear leg rear view, foot angle, heel depth, and bone quality), udder traits (udder depth, udder texture, udder support, fore udder attachment, front teat placement, front teat length, rear udder height, rear udder width, and rear teat placement), and overall conformation score. Accuracy of genomic predictions was assessed using the single-trait animal model genomic best linear unbiased prediction method implemented in the ASReml-SA v4.2 software. Results: Heritability estimates ranged from 0.10 to 0.50 for body traits, 0.21 to 0.35 for rump traits, 0.13 to 0.29 for feet and leg traits, and 0.05 to 0.46 for udder traits. Rump traits exhibited the highest average heritability (0.29), while feet and leg traits had the lowest estimates (0.21). Accuracy of genomic predictions varied among the twenty-four linear body conformation traits, ranging from 0.26 to 0.49. The heritability and prediction accuracy of genomic estimated breeding value (GEBV) for the overall conformation score were 0.45 and 0.46, respectively. The GEBVs for body conformation traits in Korean Holstein cows had low accuracy, falling below the 50% threshold. Conclusion: The limited response to selection for body conformation traits in Korean Holsteins may be attributed to both the low heritability of these traits and the lower accuracy estimates for GEBVs. Further research is needed to enhance the accuracy of GEBVs and improve the selection response for these traits.

A STUDY ON AMALGAM CAVITY FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (아말감 와동의 파절에 관한 3차원 유한요소법적 연구)

  • Kim, Han-Wook;Um, Chung-Moon;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.345-371
    • /
    • 1994
  • Restorative procedures can lead to weakening tooth due to reduction and alteraton of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus and depth are very important. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional. finite element models were made by serial photographic method and cavity depth(1.7mm, 2.4mm) and isthmus (11 4, 1/3, 1/2 of intercuspal distance) were varied. linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B, G and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. G model(Gap Distance: 0.000001mm) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). When compression occurred along the interface, the forces were transferred to the adjacent regions. However, tensile forces perpendicular to the interface were excluded. R model was assumed non-connection between the restoration and cavity wall. No force was transferred to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, von Mises stress, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows: 1. G model showed stress and strain patterns between Band R model. 2. B model and G model showed the bending phenomenon in the displacement. 3. R model showed the greatest amount of the displacement of the buccal cusp followed by G and B model in descending order. G model showed the greatest amount of the displacement of the lingual cusp followed by B and R model in descending order. 4. B model showed no change of the displacement as increasing depth and width of the cavity. G and R model showed greater displacement of the buccal cusp as increasing depth and width of the cavity, but no change in the displacement of the lingual cusp. 5. As increasing of the width of the cavity, stress and strain were not changed in B model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in G and R model. The possibility of the tooth fracture was increased. 6. As increasing of the depth of the cavity, stress and strain were not changed in B and G model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in R model. The possibility of the tooth fracture was increased.

  • PDF

Analysis on Torso Shapes of Women in 50s and 60s (50~60대 여성의 체간부 체형분석)

  • Kim, Hyo-Sook;Lee, So-Young;Kim, Ji-Min;Lee, Jun-Hyuk
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.3
    • /
    • pp.311-323
    • /
    • 2012
  • This study establishes the initial data to develop a well-fitted underwear pattern by categorizing and analyzing torso types based on body measurements of women in their 50s and 60s. The results are as follows: First, the statistical assessment on the body measurements showed meaningful differences among age groups in twenty seven items (except for bust breadth, hip width armscye depth, hip depth, neck base circumference, armscye circumference, chest circumference, hip circumference, bishoulder length, shoulder length, front interscye, back interscye, weight and inclined angle of left shoulder). Women in their early 50s and late 60s (respectively) showed the highest values in height and depth. Second, there are five body factors according to the results of the factor analysis: Factor 1 (circumference, width, and depth of upper body measurements) - the degree of body depth and obesity, Factor 2 (height and vertical length) - The vertical torso length, Factor 3 - the size of shoulder, Factor 4 - the vertical upper body length, and Factor 5 - the size of shoulder angle. Third, the results of the cluster analysis showed that there are four distinctive body types. The largest number of the study subjects was related to Type 3 (30.69%), followed by Type 2 (26.78%), Type 1 (25.84%), and Type 4 (16.69%), respectively. For distribution of age groups by body type, Type 3 was the most common among the 60s group while Type 2 appeared most frequently among the 50s.

An Analysis for the Characteristics of Headward Erosion and Separation Zone due to Bed Discordance at Confluence (합류부 하상고 불일치에 의한 두부침식 및 분리구역 특성분석)

  • Choi, Heung Sik;Mo, Sun Jea;Lee, Sam Hee
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.879-889
    • /
    • 2015
  • The pattern of headward erosion at tributary and the separation zone formation in a loosed bed at confluence according to the confluence angle, discharge ratio, and dredging depth ratio have been analyzed. The separation zone is defined the inside of zero velocity boundary at downstream of confluence. The limit of separation zone occurrence is presented with dredging depth ratio. The propagation length of knickpoint increases as the confluence angle, discharge ratio, and dredging depth ratio increase in general and its regression equation has been suggested. The length and width ratios of separation zone in a loosed bed increase as discharge ratio and confluence angle increase as well as in a fixed bed. The length ratio decreases and the width ratio increases as dredging depth ratio increases results in great increase of shape factor and backwater rise by the conveyance reduction at confluence. The regression equation of shape factor with confluence angle, discharge ratio, and dredging depth ratio has been suggested.

Development of Statistical Model for Line Width Estimation in Laser Micro Material Processing Using Optical Sensor (레이저 미세 가공 공정에서 광센서를 이용한 선폭 예측을 위한 통계적 모델의 개발)

  • Park Young Whan;Rhee Sehun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.27-37
    • /
    • 2005
  • Direct writing technology on the silicon wafer surface is used to reduce the size of the chip as the miniature trend in electronic circuit. In order to improve the productivity and efficiency, the real time quality estimation is very important in each semiconductor process. In laser marking, marking quality is determined by readability which is dependant on the contrast of surface, the line width, and the melting depth. Many researchers have tried to find theoretical and numerical estimation models fur groove geometry. However, these models are limited to be applied to the real system. In this study, the estimation system for the line width during the laser marking was proposed by process monitoring method. The light intensity emitted by plasma which is produced when irradiating the laser to the silicon wafer was measured using the optical sensor. Because the laser marking is too fast to measure with external sensor, we build up the coaxial monitoring system. Analysis for the correlation between the acquired signals and the line width according to the change of laser power was carried out. Also, we developed the models enabling the estimation of line width of the laser marking through the statistical regression models and may see that their estimating performances were excellent.

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

THE EFFECT OF PRIMER ON PENETRATION OF SEALANT (치면열구전색제의 열구 침투에 primer의 효과)

  • Jeong, Hye-Seon;Lee, Jae-Ho;Choi, Hyung-Jun;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.416-426
    • /
    • 1999
  • The objective of this study is to confirm the effect of dentine bonding primer application on penetration of sealant. Extracted permanent molars were used to compare penetration success rate of control group (sealant application only) and experimental groups (sealant application after applying the primers of $Scotchbond^{TM}$ Multi-Purpose system and $All-Bond^{(R)}$ 2 system). The following results were obtained: 1. The experimental groups using the primers showed increased sealant penetration success rate to the base of fissure when compared to control group but there was no statistically significant differences(p>0.05). 2. The depth, width and 'depth/width' value of fissure had statistically significant effect on sealant penetration success rate(p<0.05). 3. The penetration success rate decreased about 0.9 times as the depth of fissure increased every $25{\mu}m$, and increased about 1.1 times as the width of the fissure orifice increased every $25{\mu}m$ and decreased about 0.6 times as the 'depth/width' value increased every 1. From the above results, it can be concluded that assure morphology had a great effect on sealant penetration and for better penetration, use of dentine bonding primer can be helpful but it needs more study in clinical bases.

  • PDF

Analysis of Flood Characteristics at Confluence by Lateral Inflow (횡유입에 의한 합류부 홍수특성 분석)

  • Choi, Hung-Sik;Cho, Min-Suk;Park, Young-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.59-68
    • /
    • 2006
  • Flow separation of recirculation zone by increasing of flow and change of its direction at confluence results in backwater due to conveyance reduction. The hydraulic characteristics of flow separation are analysed by experimental results of flow ratios of tributary and main streams and approaching angles. The boundary of flow separation by dimensionless length and width is defined by the streamline of zero and this definition agrees well to the existing investigation. Because flow separation doesn't appear in small flow ratio and approaching angle of $30^{\circ}$, the equation of flow separation with flow ratio and approaching angle is provided. In flow separation consideration and comparing with previous results, the existing equations of dimensionless length and width ratios by function of approaching angle, flow ratio, and downstream Froude number are modified and also contraction coefficient and shape factor are analysed. Dimensionless length and width ratios are proportional to the flow ratio and approaching angle. In analysis of water surface profiles, the backwater effects are proportional to the flow ratio and approaching angle and the magnitude at outside wall is greater than that of inside wall of main stream. The length, $X_l$ from the beginning of confluence to downstream of uniform flow, where the depth is equal to uniform depth, is characterized by width of stream, flow ratio, approaching angle, and contraction coefficient. The ratios between maximum water depth by backwater and minimum depth at separation are analysed.

Development of Hydraulic Jet Dredge ( 1 ) - Water tank Experiment for the Excavating Performance of Water-Jet Nozzle on the Sand - (분사식 행망의 개발에 관한 연구 ( I ) - 분사노즐의 사면 굴삭성능에 관한 수조실험 -)

  • Jo, Bong-Gon;Go, Gwan-Seo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.255-265
    • /
    • 1991
  • In order to find the excavating performance of water-jet nozzle on the sand, the authors were carried out the excavating experiment with the model nozzles which were semi circular sectioned nozzles and rectangular nozzle in water tank. The results were as follows. 1) Excavating maximum depth and width on the sand by the water jet were straightly increased in proportion to the velocity of water jet and the section area of nozzle, and that, by the nozzle distance from the excavating point on the sand, the depth was decreased, while the width was increased straightly. 2) Rectangular nozzle which the thick of hole is 1mm, was a little bit better than the circular nozzle of the same sectioned area on the excavating performance. 3) Empirical equations between the velocity of water jet, the distance of nozzle, and the maximum excavating depth and width by angle of nozzle were expressed as linear, they were as follows on the 45$^{\circ}$ angle of the rectangular nozzle(1$\times$12mm); D=0.0093V sub(0)-0.23H+5.7. W=0.0147V sub(0)+1.06H+10.2. where, D is the maximum excavating depth(cm), W is the maximum excavation width(cm), V sub(0) is the velocity of water jet(cm/s); 926$\leq$V sub(0)$\leq$1504, H is the distance(cm) from nozzle tip to water-jetted point on the surface of sand.

  • PDF

A Comparative Analysis of the Evaluation Methods for Ground Subsidence in Korea (국내 함몰형 지반침하 평가방법의 비교 분석)

  • Hyun-Bae Park;Seong-Woo Moon;Sejeong Ju;Jeungeum Lee;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.381-401
    • /
    • 2024
  • To predict the ground subsidence caused by mines, various evaluation methods were applied to cases of ground subsidence in Korea, and the results were compared and analyzed. Continuous subsidence, which is relatively easily and accurately predicted, was excluded in this analysis. The stress arch - volumetric expansion method, limit equilibrium method, numerical analysis, probabilistic method, and evaluation method of the Korea Mine Rehabilitation and Mineral Resources Corporation (KO MIR) were applied to 36 subsidence cases, including subsidence location, width, and depth, and goaf width, depth, and incline data. The stress arch - volumetric expansion method was the most accurate with an accuracy of ~92%. In the case of the KOMIR method, the regression model is 86.1% accurate, but somewhat lower in accuracy using a triangular pyramidal volume. The stress arch - volumetric expansion and KOMIR methods have the disadvantage of evaluating whether subsidence occurs or not. In the case of the numerical analysis, the accuracy is 72.3% when estimating the subsidence depth, but is slightly lower (55.8%) when estimating the subsidence width. The probabilistic and limit equilibrium methods have similar accuracies of 50.8~63.7%. Given it is possible to determine whether subsidence occurs, and the subsidence location, width, and depth with each method, it is recommended to apply various methods when evaluating sinkhole-type subsidence.